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Abstract. A piezoelectric beam finite element is proposed, where the displacement is assumed to vary in 

accordance with the Timoshenko assumption and the electric potential has linear variation through each 

piezoelectric layer thickness. The solution of the homogeneous form of the linear differential equations which 

describe the behavior of the piezoelectric Timoshenko beam is used as interpolation functions to develop a 2-

node finite element for planar frames. According to the adopted procedure the element has the following 

properties: (a) it has the same degrees of freedom as its purely mechanical counterpart; (b) it is free of shear 

locking; (c) it is superconvergent, i.e. the computed nodal values are exact with respect to the element 

formulation regardless the applied loading pattern. In the solution of the numerical examples, the efficiency of 

the developed finite element is illustrated showing that few elements are adequate to precisely capture the static 

response for both mechanical and electrical variables. 
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1  Introduction 

Smart materials are those that exhibit some type of coupling between different physical domains and may 

have their characteristics modified by controlled changes of state variables that characterize the mechanical, 

electrical, thermal and chemical domains, for example. Thus, piezoelectric materials are classified as smart 

because they exhibit coupling between the mechanical and electrical domains [1]. Piezoelectrics, available in the 

form of thin sheets of ceramic or polymer, are the most popular and practical smart materials due to their 

coupled electromechanical properties, that make them suitable for use as distributed sensors and actuators to 

control structural response. In the sensor application, strains can be determined from measurements of induced 

electric potential (direct piezoelectric effect), whereas in actuator applications strains can be controlled through 

the input of appropriate electric potential (converse piezoelectric effect). The technology of self-monitoring and 

self-controlling smart structures, by integrating distributed piezoelectric sensors and actuators, provides the 

possibility for the development of light-weight and rigid structures. 

There are a number of beam theories that are used to represent the kinematics of deformation of one 

dimensional piezoelectric finite element [2]. The simplest beam theory is the Euler-Bernoulli beam theory, 

which assumptions amount to neglecting both transverse shear and transverse normal effects, i.e. deformation is 

due entirely to bending and inplane stretching [3-5]. It can be effectively used for the analysis of thin and slender 

piezoelectric smart beams. The next one in the hierarchy of beam theories is the Timoshenko beam theory, which 

relaxes the normality assumption of the Euler-Bernoulli beam theory and includes a constant state of transverse 

shear strain with respect to the thickness coordinate. Since the transverse shear strain in the Timoshenko beam 

theory is represented as a constant through the beam thickness, a shear correction factor is introduced to 

calculate the transverse shear force that would be equal in magnitude to the actual shear force. Timoshenko-

based beam finite elements differ from each other in the choice of interpolation functions used for the transverse 

displacement and rotation or in the weak form used to develop the finite element model [6]. They are widely 

used in the literature for the analysis of piezoelectric smart structures [7-11]. 

In  solving  differential  equations by  the finite  element  method, it  has been found that the rate of conver- 
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Figure 1. Timoshenko beam kinematics 

gence of finite element solutions at some exceptional points of a domain exceeds the optimal global rate. This 

phenomenon has come to be known as superconvergence [12], which first proof is usually attributed to Douglas 

and Dupont [13]. Superconvergence is of considerable interest not only from a theoretical but also from a 

practical viewpoint. There are several important applications of superconvergence results. For instance, a nodal 

superconvergence of finite element approximations is used for creating adaptive mesh refinements and a 

posteriori error estimates. 

We developed in this paper a superconvergent piezoelectric beam finite element for plane frames. A linear 

element is proposed, whose displacement varies according to Timoshenko assumption and the electric potential 

has linear variation along with the thickness of each piezoelectric layer. The interpolation functions of the 

element are identified from the general solution of the homogeneous part of the system of equations that 

describes the linear problem. Such a feature makes the element to be superconvergent, i.e. nodal values are exact 

with respect to the element formulation regardless the loading pattern. In the solution of the numerical examples, 

it is shown that few elements are adequate to precisely capture the nodal static response for both mechanical and 

electrical variables. Nothing is yet known about the accuracy of the electrical quantities obtained by such a type 

of element. To prove a nodal superconvergence for the difference of electric potential in the piezoelectric layers 

seems to be an open problem for the time being. 

2  Fundamentals 

A straight beam with attached piezoelectric layers is considered. The displacement field varies in 

accordance with the Timoshenko assumption while the electric potential is assumed linear through each 

piezoelectric layer thickness. 

2.1 Displacement, strain, electric potential and electric field 

Suppose that a point � of the beam shown in Fig. 1 in the initial configuration moves to the point � in the 

current configuration with motion lying in the �� plane. Under the Timoshenko assumption [14], the cross-

section is taken to be infinitely rigid in its own plane, remaining plane but not necessarily perpendicular to the 

beam axis during the motion. For small rotations, the displacement field of the beam reads    ����, �
 = ���
 + ���
          ����, �
 = ���
                                                                                                         �1
 
where the displacement � and � refer to the point � on the beam axis, which moves to the point �, and  is the 

cross-section rotation. Assuming that the components of the strain tensor are small, its non-null entries read 
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Figure 2. Beam with bottom and top piezoelectric layers 

   ����, �
 = ����
 + ����
          γ����, �
 = γ��
                                                                                                       �2
 
with    ����
 = �′          � ��
 = ′          γ��
 = �′ + .                                                                                                           �3
 
A prime indicates differentiation with respect to �. 

Figure 2 shows a host beam of length �, having a rectangular cross section of width � and thickness 2ℎ, 

with two piezoelectric layers bonded on its bottom and top surfaces. The lower layer has width �� and thickness ��, and the upper layer has width �� and thickness ��. Because the electric field vector   is irrotational one has 

    = ⌊"� "� "#⌋% = − '()(� ()(� ()(*+%                                                                                                                     �4
 
where ) is a scalar function known as electric potential. Because the motion of the beam lies in the �� plane one 

specifies "# = 0. Indeed, assuming that the gradient of electric potential through the thickness of a piezoelectric 

layer is the only to be considered [15-18] then "� ≈ 0. Since the electric potential varies linearly through the 

thickness of a piezoelectric layer / [19], between the values )0 at the bottom (� = �0) and )01� at the top 

(� = �0 + �0) of the layer, then 

   )��, �
 = 21 − � − �0�0 3 )0��
 + � − �0�0 )01���
          / = 1, 3.                                                                             �5
 
The nonzero component of   reduces to 

   "� = − )50�0                                                                                                                                                                                �6
 
in which )50 = )01� − )0 is the voltage (difference of electric potential) in the piezoelectric layer /. 

2.2 Principle of virtual displacements 

The principle of virtual displacements for the piezoelectric beam, shown schematically in Fig. 3, takes the 

form [20]: 

   − 7 �89�� + :9� + ;9γ + ��9)5� + ��9)5�
<�=
�  + 7 >?�9� + ?�9�@<�=

�  
+ A>B�C9�C + B�C9�C + :#C9DC@E

CF� = 0                                                                                                                               �7
 
with 

   8 = 7 H�<�I                       : = 7 H�J<�I                       ; = 7 H��<�I  
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Figure 3. Free-body diagram of a piezoelectric beam showing all the applied loads and the end displacements 

   �� = ���� 7 K�<�LM
LMLNO           �� = ���� 7 K�<�M1NP

M                                                                                                               �8
 
where H� and H�� are the normal and transverse shear stress; K�  is the transverse electric displacement; ? �  and ? �  are the distributed axial and transverse forces (force per unit length); B�C, B�C  and :#C are the end loads; �C, �C and DC are the end displacements; � is the piezoelectric beam cross-section area. 

Performing integration by parts in Eq. (7), taking into account Eq. (3), and then applying the fundamental 

lemma of variational calculus [21] yields the governing equations    8R = −?�          ;R = −?�          :R − ; = 0          �� = 0          �� = 0                                                                       �9
 
in the problem domain, 0 < � < �. The first three equations represent the static equilibrium statement, while the 

last two equations are the application of Gauss law to the piezoelectric layers. The solution of Eq. (9) should 

satisfy the prescribed values of    �� = �5�  or  8 = −B��       �� = �̅�  or  ; = −B��       D� = D̅�  or  : = :#�      ∶ � = 0 �10
    �E = �5E  or  8 = B�E          �E = �̅E  or  ; = B�E          DE = D̅E  or  : = −:#E   ∶ � = � 
where the quantities �5C, �̅C and D̅C denote known values of �C, �C and DC. 
2.3 Constitutive relations 

Let an extension mode piezoelectric with polarization oriented in the positive �- axis and remaining 

material principal directions aligned with the �- axis. According to the beam theory, the constitutive relations 

reduces to the simple form 

   Y H�H��K� Z = [ ;\�� 0 ]̃��_`aa 0sym. −ef�
g Y ��γ��−"�Z                                                                                                                          �11
 

where _ is the shear correction factor [22, 23]. 

Following Butz et al. [24], Khdeir et al. [25], Elshafei et al. [26] and Sulbhewar and Raveendranath [27], 

the coefficients ;\��, ]̃�� and ef�are defined by 

   ;\�� = ;�� − ;�EE;EE           ]̃�� = ]̅�� − ;�E]̅�E;EE           ef� = e�̅ + ]̅�EE;EE                                                                               �12
 
with 

   ;Ch = C̀h − C̀� h̀�`��           ]̅�C = ]�C − C̀�]��`��           e�̅ = e� + ]��E`��                                                                               �13
 
where `Ch , ]Ch  and eC are the elastic, piezoelectric and dielectric coefficients [28]. 
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Substitution of Eq. (2), Eq. (6) and Eq. (11) into Eq. (8) gives 

   
⎩⎪⎨
⎪⎧  8  :  ;  ��  �� ⎭⎪⎬

⎪⎫ =
⎣⎢⎢
⎢⎢⎡
��� ��E 0 ��s ��a�EE 0 �Es �Ea��� 0 0sym. �ss 0�aa⎦⎥⎥

⎥⎥⎤
⎩⎪⎨
⎪⎧  ��  �  γ  )5�  )5� ⎭⎪⎬

⎪⎫                                                                                                       �14
 
with 

   ��� = ;\����� + ;\��w�w + ;\�����          ��E = ;\����� 2��2 + ℎ3 − ;\����� 2��2 + ℎ3 
   ��s = ]̃��� ����           ��a = ]̃��� ����  
   �EE = ;\����� x��E3 + ℎ�� + ℎEy + 13 ;\��w�wℎE + ;\����� x��E3 + ℎ�� + ℎEy                                                         �15
 
   �Es = ]̃��� ���� 2��2 + ℎ3          �Ea = −]̃��� ���� 2��2 + ℎ3 
   ��� = _�`aa��� + `aaw�w + `aa���
          �ss = −ef�� ����E           �aa = −ef�� ����E . 
Here ;\��� and �� refer to the coefficient ;\�� and the cross-section area of the bottom piezoelectric layer; ;\��w 

and �w refer to the coefficient ;\�� and the cross-section area of the host beam; and so on. 

3  Finite element model 

Introducing the constant C̀ = 0 or C̀ = 1 in order to identify the piezoelectric layer z as actuator or sensor, 

respectively, the expression Eq. (7) is rewritten for a piezoelectric beam finite element of length �{, in view of 

the strain-displacement equations Eq. (3) and the constitutive relations for 8 and : in Eq. (14), as 

   − 7 |8}9�R + ;9��R + 
 + :}9R + �̀��9)5� + `���9)5�~<�=�
� + 7 |?�9� + ?�9�=�

�  
−)�9�′ − )�9��′ + 
~<� + A>B�C9�C + B�C9�C + :#C9DC@E

CF� = 0                                                                         �16
 
with    8} = ����R + ��ER + �̀��s)5� + `���a)5�      )� = �1 − �̀
��s)5� + �1 − `�
��a)5� �17
    :} = ��E�′ + �EER + �̀�Es)5� + `��Ea)5�     )� = �1 − �̀
�Es)5� + �1 − `�
�Ea)5�. 

The weak form Eq. (16) is associated with the following set of ordinary differential equations    8}R = −?� − )�          ;R = −?�          :}R − ; = −)�          �̀�� = 0          `��� = 0                                         �18
 
in the element domain, 0 < � < �{ , subjected to the boundary conditions Eq. (10). There are a few things worth 

mentioning about these equations: (a) when �̀ = `� = 0, the set reduces to the equilibrium equations; (b) a 

piezoelectric layer in actuation mode ( C̀ = 0) induces a uniform distributed axial load )� as, also as, a 

distributed moment load )�  along the element length; (c) a piezoelectric layer in sensing mode ( C̀ = 1) 

introduces a linear dependency in the solution space; (d) the unknown voltages can be condensed out by 

substituting the equations related with the Gauss law into the equilibrium ones, enabling the solution space to be 

set only in terms of the mechanical unknowns. 

Recall that the classical Euler-Bernoulli beam element gives exact nodal values because the element is 

based on the exact polynomial solution of the homogeneous problem. Analogously, one can develop a 

specialized piezoelectric beam element based on the exact solution of the homogeneous form of Eq. (18). A 
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priori this implies that the values of the primary variables �, �, , )5�, and )5� at the nodes are exact independent 

of the load distribution because the finite element approximation space is the same as the space of general 

solutions to the piezoelectric beam problem. Such an element is said to be superconvergent [29]. Here, one 

considers this type of approximation. 

Assuming that �Ch  are constant and integrating the equilibrium equations in Eq. (18) for the homogenous 

case (i.e., ? � = ?� = 0), after have condensed out the variables )5� and )5�, one obtains    �̅���R + �̅�ER = ��          �����R + 
 = �E          �̅�E�R + �̅EER = �� + �E�                                                       �19
 
which exact solution is 

   Y ���
 ���
 ��
 Z = 1∆
⎣⎢⎢
⎢⎢⎢
⎡ �̅EE� − �̅�E2 �E −�̅�E� ∆ 0 0�̅�E2 �E ∆��� � − �̅��6 �� − �̅��2 �E 0 −∆� ∆
−�̅�E� �̅��2 �E �̅��� 0 ∆ 0⎦⎥⎥

⎥⎥⎥
⎤

⎩⎪⎨
⎪⎧ ��  �E  ��  �s  �a  �� ⎭⎪⎬

⎪⎫                                                       �20
 
where �� through �� are constants of integration, and 

   ∆ = �̅���̅EE − �̅�EE           �̅Ch = �Ch − �̀ �Cs�hs�ss − `� �Ca�ha�aa .                                                                                     �21
 
To develop the superconvergent model, first one defines the nodal degrees of freedom    �� = ��0
          �� = ��0
          D� = −�0
          �E = ���{
          �E = ���{
          DE = −��{
,              �22
 

and then express them in terms of the constants �C using Eq. (21) to write 

   � = 1∆
⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎡ 0 0 0 ∆ 0 00 0 0 0 0 ∆0 0 0 0 −∆ 0�̅EE�{ − �̅�E�{E2 −�̅�E�{ ∆ 0 0�̅�E�{E2 ∆�{��� 21 − 2

�
3 − �̅���{E2 0 −∆�{ ∆

�̅�E�{ − �̅���{E2 −�̅���{ 0 −∆ 0⎦⎥⎥
⎥⎥⎥
⎥⎥⎥
⎤

�          � = 12∆����̅���{E                                                  �23
 

with    � = ⌊�� �� D� �E �E DE⌋%          � = ⌊�� �E �� �s �a ��⌋% .                                                           �24
 
Next, one identifies the finite element interpolation functions using Eq. (20) and the inverse relation of Eq. 

(23): 

   ���
 = 11 + �
��%��
�          ���
 = 11 + �

��%��
�          ��
 = − 11 + �
��%��
�                                         �25
 

where 

   �� =

⎩⎪
⎪⎪
⎪⎨
⎪⎪
⎪⎪
⎧ �1 + �
��− 6�̅�E�̅���{ ���E

− 3�̅�E�̅�� ���E�1 + �
�E6�̅�E�̅���{ ���E
− 3�̅�E�̅�� ���E ⎭⎪

⎪⎪
⎪⎬
⎪⎪
⎪⎪
⎫

      �� =
⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧ 0�� + �� + 2���E
���{ 2�2 + ��3���E0�� + �E + 2���E
�E−�{ 2�2 + �E3���E ⎭⎪⎪

⎪⎬
⎪⎪⎪
⎫

      �� =
⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧ 0− 6�{ ���E�� − 2 + 3��
��06�{ ���E�� − 2 + 3�E
�E⎭⎪⎪

⎪⎬
⎪⎪⎪
⎫

                          �26
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with � � = 1 − � �{⁄  and � E = � �{⁄ . 

Note that such interpolation functions are interdependent and depend on the material properties. This 

dependency is entirely left in charge of � when the host beam and attached piezoelectric layers form a 

symmetric cross-section because �̅�E = 0. In this case, the developed flexural interpolation functions �� and �� 

reduce to that of interdependent interpolation element (IIE) proposed by Reddy [6, 29]. If the parameter � is 

null, i.e. the shear rigidity ��� is infinity, relations Eq. (25) degenerate to those of the Euler-Bernoulli element. 

The virtual displacements statement associated with Eq. (19) reads 

   − 7 ���̅���R + �̅�ER
9�R + �����R + 
9��R + 
 + ��̅�E�R + �̅EER
9R�<�=�
�  

+ 7 >?�9� + ?�9� − )�9�R − )�9R@<�=�
� + A>B�C9�C + B�C9�C + :#C9DC@E

CF� = 0.                                           �27
 
Substitution of Eq. (25) into Eq. (27) gives    9�%�−� + � + �
 = 0                                                                                                                                                         �28
 
where 

   � = 7 |��R >�̅����R% + �̅�E��R%@ + ���>��R + ��@>��R% + ��%@ + ��R ��̅�E��R% + �̅EE��R%
~<�=�
� � = �� 

   � = 7 >?��� + ?��� − )���R − )���R @<�=�
�                                                                                                               �29
 

   � = ⌊B�� B�� :#� B�E B�E :#E⌋% 
In the previous relations observe that: (a) external load vector � is work equivalent to the distributed forces ? �  

and ? � , and the voltages )5� and )5� applied to the piezoelectric actuator layers; (b) unknown reactions are 

collected in �. 

As Eq. (28) must hold for arbitrary 9�, the term in parentheses must vanhish to result in the linear system    � = �� =  � + �.                                                                                                                                                                  �30
 
The explicit form of the element stiffness matrix � and of the external load vector � for uniformly distributed 

loads ? � = ?5 �  and ? � = ?5 �  are written, in local coordinates, as 

   � = 1�{

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎡�̅�� 0 −�̅�E −�̅�� 0 �̅�E4�{E ω 2�{ ω 0 − 4�{E ω 2�{ ω

ω + �̅EE �̅�E − 2�{ ω ω − �̅EE�̅�� 0 −�̅�Esym. 4�{E ω − 2�{ ωω + �̅EE⎦⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎤

          ω = 11 + �

3∆�̅�� 

�31
 
   � = 11 + �

?5��{2
⎩⎪
⎨
⎪⎧ 1 + �− 2�̅�E �{�̅��⁄− �̅�E �̅��⁄1 + �2�̅�E �{�̅��⁄− �̅�E �̅��⁄ ⎭⎪

⎬
⎪⎫ + ?5��{2

⎩⎪⎨
⎪⎧ 01�{ 6⁄01− �{ 6⁄ ⎭⎪⎬

⎪⎫ + )�
⎩⎪⎨
⎪⎧ 100−100 ⎭⎪⎬

⎪⎫ + )�
⎩⎪⎨
⎪⎧ 00−1001 ⎭⎪⎬

⎪⎫ . 
The linear system Eq. (30) of each element must be written first in the global system �� � �  to then obtain 

the assembled linear system of the entire structure from all element contributions. In the notation of Fig. 4, the 

displacements � and forces � in the local system �� are related to the displacements ��  and forces ��  in the 

global system �� � �  by means of 
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Figure 4. (a) Components of � in the local system ��; (b) components of �� in the global system ���� 

   � = ���          � = ���          � =
⎣⎢⎢
⎢⎢⎡

cos � sin � 0 0 0 0− sin � cos � 0 0 0 00 0 1 0 0 00 0 0 cos � sin � 00 0 0 − sin � cos � 00 0 0 0 0 1⎦⎥⎥
⎥⎥⎤                                                       �32
 

where the fact that � is orthogonal implies that the element tangent stiffness matrix in both systems are related 

by    �� = �%��.                                                                                                                                                                           �33
 
Because the magnitudes of the coefficients C̀h, ]Ch and eC are quite different, the condition number of the global 

stiffness matrix can be very high. To overcome this problem, the simple and effective procedure proposed by Qi 

et al. [30] is adopted. 

This element gives exact values of �, � and  at the nodes independent of the load distribution because the 

finite element approximation space is the same as the space of general solutions to the associated Timoshenko 

beam problem, and all distributed loads are properly represented as nodal loads. Such a procedure results in an 

efficient and accurate locking-free finite element for the analysis of frame structures according to the 

Timoshenko as well as classical beam theories. The element may be adapted to include other features such as the 

geometric [31] and material nonlinearities. 

Note that although the interpolation functions ��, ��, ��  yields exact nodal values for the mechanical 

variables, they do not bring any information about the accuracy of the condensed variables )5� and )5� which are 

in turn defined by the first derivatives of �� and �� . The fundamental question then arises: do such variables 

also possess nodal superconvergence? In what follows one gives vision and insight in answering this question. 

From the constitutive relations Eq. (14), 

   � 8  : � = ���� ��E��E �EE� � �R R� + ���s ��a�Es �Ea�  � )5�  )5� � = �  � �R R� + � ¡ � )5�  )5� � 
�34
 

    � 0  0 � = ���s �Es��a �Ea� � �R R� + ��ss 00 �aa� � )5�  )5� � = � ¡% � �R R� + �¡ � )5�  )5� � 
which implies that 

   � L� � 8  : � = � �R R� + � L�� ¡ � )5�  )5� �          � ¡% � �R R� = −�¡ � )5�  )5� �                                                                            �35
 
where � and � ¡  are positive and negative definite matrices, and � ¡ is singular if some of the outer layers do 

not exhibit piezoelectricity. Substitution of the last equation of Eq. (35) into the former equation pre-multiplied 

by � ¡%  gives 

 

Local system

L

Du2

Dq2

Dq1
Du1

Dv2

Dv1

XY

a

Dq1g

Dq2g

Du2g

Du1g

Dv1g

Dv2g

Global system

Xg

Yg

D Df1c, f3c D Df1cg, f3cg
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Table 1. Properties of PZT-5H 

GPa  C/mE
  nCE/NmE  

�̀� �̀E �̀� `�� `ss  ]�� ]�� ]�a  e� e� 

126 79.5 84.1 117 23  -6.5 23.3 17  15.05 13.02 

   � )5�  )5� � = ¨ � 8  : �           ¨ = >� ¡% � L�� ¡ − �¡@L�� ¡% � L�.                                                                                          �36
 
Evaluation of Eq. (36) at the nodes, taking into account the boundary conditions Eq. (10), result in 

   
⎩⎪⎨
⎪⎧  )5��0
 )5��0
 )5���{
 )5���{
 ⎭⎪⎬

⎪⎫ = ©ª�          © = «¨ ¬¬ ¨           ª = ®−1 0 0 0 0 00 0 1 0 0 00 0 0 1 0 00 0 0 0 0 −1¯.                                                         �37
 
According to the Betti’s theorem, the nodal reactions � are exact with respect to the element formulation 

regardless the loading pattern if the nodal displacements are calculated accordingly. Since the right-hand-side of 

Eq. (37) presents nodal superconvergence, the same is expected for the left-hand-side of the equation so that the 

electrical variables )5� and )5� are anticipated to be exactly evaluated at the nodes. In what follows, this 

hypothesis is numerically tested. 

4  Numerical examples 

According to the mathematical model, the piezoelectric layers solely operate in extension mode since both 

polarization and electric field are in the �- direction. In the numerical evaluation of the constitutive parameters ;\��, ]̃�� and ef� in Eq. (12) , the host structure is assumed to be made of aluminum with Young´s modulus " = 70.3 GPa and Poisson´s ratio ° = 0.345, and the piezoelectric layers are assumed to be made of PZT-5H 

with properties indicated in Table 1 [32]. As a transversely isotropic material (isotropic in the plane normal to �-

axis), the PZT-5H presents `E� = �̀�, `EE = �̀�, `aa = `ss, `�� = � �̀� − �̀E
/2, ]�E = ]��, ]Es = ]�a and eE = e�. The accuracy and effectiveness of the proposed element under mechanical loading is demonstrated by 

means of two linear static problems adopting the following geometry (units in mm): � = �� = �� = 25, 2ℎ = 2 

and �� = �� = 1. A code in MATLAB language has been written to carry out the numerical tests. It is interesting 

note that all numerical pitfalls due to the huge difference magnitude order involving the mechanic and 

piezoelectric dielectric constants [30, 33] are absent in the proposed formulation, because only mechanical 

degrees of freedom are concerned with the solution. 

4.1 Simply supported beam with distributed axial load and sensing 

A simply supported beam is subjected to the distributed axial load ?5 � = ?5 (?5 � = 0), with two symmetrical 

piezoelectric layers ( �̀ = `� = 1) continuously distributed as sensors. The simply supported boundary 

conditions ��0
 = ��0
 = :�0
 = 0 and 8��
 = ���
 = :��
 = 0 applied to the governing equations Eq. (9) 

yield the following closed form solutions for the displacements and rotation components, and for the sensed 

electric potentials: 

   ���
 = ?5�E �̅EE∆ 21 − 12 ��3 �� 
   ���
 = − ?5��3 �̅�E∆ x1 − 32 �� + 12 �E�E y ��                                                                                                                          �38
 
   ��
 = ?5�E3 �̅�E∆ x1 − 3 �� + 32 �E�E y 
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Table 2. Finite element solutions of a simply supported beam under uniformly distributed axial load 

�/± mesh ���5
 ���5
 ��5
 )5���5
 )5���5
 

 1 7.953845E-12 0. 0. -1.085065E-03 -1.085065E-03 

4 2 1.363516E-11 0. 0. -7.233765E-04 -7.233765E-04 

 3 1.704395E-11 0. 0. -3.616883E-04 -3.616883E-04 

 1 7.953845E-08 0. 0. -1.085065E-01 -1.085065E-01 

400 2 1.363516E-07 0. 0. -7.233765E-02 -7.233765E-02 

 3 1.704395E-07 0. 0. -3.616883E-02 -3.616883E-02 

and 

   )5���
 =  ?5� ∆�∆ 21 − ��3          )5���
 =  ?5� ∆�∆ 21 − ��3                                                                                           �39
 
where 

   ∆� = �Es�̅�E − ��s�̅EE�ss           ∆� = �Ea�̅�E − ��a�̅EE�aa .                                                                                                �40
 
Taking ?5 = 1 and coarse meshes of just two elements, Table 2 shows the finite element solutions evaluated 

at � = �5 (single domain node position) making �5 = �/4, �5 = �/2  and �5 = 3�/4 for the meshes 1, 2 and 3, 

respectively. The table results are obtained using �/± = 4 and �/± = 400, where ± = 2ℎ + �� + �E. According 

to the developed procedure note that: (a) no shear locking takes place, (b) computed nodal values are exact with 

respect to the formulation due to the superconvergent feature embodied in the element interpolation functions, 

and (c) few elements are adequate to precisely capture the static response for both mechanical and electrical 

variables. 

4.2 Simply supported beam with distributed transverse load and sensing 

With respect to the previous example, the following change is carried out: the applied distributed axial load 

is replaced by the distributed transverse load ?5 � = ?5 (?5 � = 0). The simply supported boundary conditions ��0
 = ��0
 = :�0
 = 0 and 8��
 = ���
 = :��
 = 0 applied to the governing equations Eq. (9) yield the 

following closed form solutions for the displacements and rotation components, and for the sensed electric 

potentials: 

   ���
 = − ?5��4 �̅�E∆ 21 − 23 ��3 �E�E  
   ���
 = ?5�s24 �̅��∆ x1 − 2 �E�E + ���� y �� + ?5�E2��� 21 − ��3 ��                                                                                             �41
 
   ��
 = − ?5��24 �̅��∆ x1 − 6 �E�E + 4 ���� y 
and 

   )5���
 =  ?5�E2 ∆E∆ 21 − ��3 ��           )5���
 =  ?5�E2 ∆s∆ 21 − ��3 ��                                                                                 �42
 
where 

   ∆E= ��s�̅�E − �Es�̅���ss           ∆s= ��a�̅�E − �Ea�̅���aa .                                                                                                  �43
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Table 3. Finite element solutions of a simply supported beam under uniformly distributed transverse load 

�/± mesh ���5
 ���5
 ��5
 )5���5
 )5���5
 

 1 0. 7.671948E-11 1.254316E-08 -2.450042E-03 2.450042E-03 

4 2 0. 1.068538E-10 0. -3.266722E-03 3.266722E-03 

 3 0. 7.671948E-11 -1.254316E-08 -2.450042E-03 2.450042E-03 

 1 0. 6.499757E-03 1.254316E-02 -2.450042E+01 2.450042E+01 

400 2 0. 9.122457E-03 0. -3.266722E+01 3.266722E+01 

 3 0. 6.499757E-03 -1.254316E-02 -2.450042E+01 2.450042E+01 

Taking ?5 = 1 and coarse meshes of a pair of elements, Table 3 shows the finite element solutions evaluated 

at � = �5 (single domain node position) making �5 = �/4, �5 = �/2  and �5 = 3�/4 for the meshes 1, 2 and 3, 

respectively. Note again that the displacements, rotation and sensed electric potentials are exactly evaluated. 

5  Conclusions 

The superconvergent beam finite element for piezoelectric plane frames has its efficiency proven by 

numerical examples. The element equations are analytically and consistently formulated. The superconvergent 

linear element developed: (a) has interpolation functions dependent on the mechanical properties of the materials 

and the electrical properties of the sensor layers, (b) has the same degrees of freedom as its purely mechanical 

counterpart; (c) does not suffer from shear locking; (d) exhibits no numerical pitfalls associated with the huge 

difference between the magnitude order of the mechanic and dielectric constants; (e) computes exact nodal 

values with respect to the Timoshenko assumption regardless the applied loading pattern. 

The superconvergent feature embodied in the interpolation functions make this element ideally suited for 

frame structural analysis because few elements per a structural member still yields exact nodal results. It is 

hoped that the understanding and insight gained through that beam finite element model, one may be able to 

develop simple but reliable shear deformable plate elements. 

Authorship statement. The authors hereby confirm that they are the sole liable persons responsible for the 
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