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Lucas Braga Proença1, Davi Antônio dos Santos2, Stiven Schwanz Dias1

1Embraer S.A. lucas.proenca@embraer.com.br, stiven.dias@embraer.com.br
2Aeronautics Institute of Technology (ITA) davists@ita.br

Abstract. This work is concerned with the problem of state estimation for a small, nine-meter-long motorboat
navigating in a GPS-denied environment. It proposes a visual-inertial navigation method based on a continuous-
discrete formulation of the extended Kalman filter (EKF) for estimating the state vector of the motorboat, which
includes its position, velocity and attitude, as well as the sensors’ biases. The filter relies on inertial measurements,
provided by an accelerometer and a rate gyro, and on position measurements obtained by a panoramic camera
system. By employing Monte Carlo simulation, this work concludes that the proposed method has an estimation
performance comparable to GPS/INS approaches.
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1 Introduction

Sensor fusion is a computational process where multiple physical sensors’ measurements are combined to
produce more accurate information of the environment, as defined by Elmenreich [1]. This field of research has
several applications, such as navigation, image processing, data science, artificial intelligence, and robotics. This
work, in particular, employs sensor fusion techniques for navigation.

Inertial sensors constitute the basis of a navigation system. The so-called Inertial Measurement Unit (IMU) is
a combination of sensors such as accelerometers, rate gyro and magnetometers in one single device, which is often
integrated to a computer that calculates body’s position, velocity and orientation. This integrated system is com-
monly referred as Inertial Navigation System (INS), such as in Farrell and Barth [2]. Woodman [3] demonstrates
that these systems are usually not sufficient for navigation because they are associated to drifting errors. For that,
navigation systems often combine INS with Global Positioning System (GPS), as it is explained by Farrell [4].

Although the blended GPS/INS is suitable for most navigation applications, KNIGHT [5] and MUELLA et al.
[6] show that GPS signal is considerably affected by atmospheric conditions, electromagnetic phenomena and by
obstruction in the so-called GPS-denied environments. For that reason, some applications require a navigation
approach independent from GPS, that is, robust navigation approaches such as the ones detailed by BACHRACH
et al. [7], which are able to deal with GPS signal unavailability and to external interference such as jamming and
spoofing. In this context, this work proposes a novel navigation approach: the vehicle state (position, velocity
and attitude) is estimated by using Bayesian filtering, which combines inertial measurements and vehicle’s pose-
related information coming from a camera system. This kind of approach is commonly referred as visual-inertial
navigation and is often employed in Robotics.

In the context of the Aerial Robotics Laboratory, at the Aeronautics Institute of Technology (ITA - Brazil),
several works have been developed in the field of robot navigation, especially for micro aerial vehicles (MAVs),
which have been increasingly used for their capability of operating virtually anywhere, even indoors. The visual-
inertial navigation is presented as a promising approach in this cases, taking advantage of the rich information on
the environment and allowing increased navigation autonomy, obstacle avoidance, target tracking and mapping.

A navigation algorithm based on the Extended Kalman Filter (EKF) is presented by BALLET et al. [8] for
low-cost MAVs, which uses measurements from inertial sensors, a downward-facing camera and an ultrasonic
range sensor, navigating through an environment with known visible landmarks on the ground. In the same field
of research, BARBOSA et al. [9] presented a visual-inertial navigation method for estimating position, velocity
and heading of a MAV based on the Unscented Kalman Filter (UKF) and using low-cost inertial sensors and a
camera. Also, it shows a performance comparison between the proposed method and a similar EKF-based method,
concluding that the UKF has a slightly better performance with a higher computational effort.
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In a more recent work, ASFORA [10] performed an investigation of the Ensemble Kalman Filter (EnKF)
for the visual-aided navigation of multirotor MAVs. In this work, the EnKF is chosen for its ability to deal with
a very large number of variables and high volume of data. The filter is evaluated for attitude determination,
navigation, and simultaneous navigation and tracking. The performance of the EnKF filter is compared to more
traditional algorithms for nonlinear systems, leading to the conclusion that the EnKF presents similar performance
with respect to the EKF and a computational burden equivalent to the UKF. Besides, the simulation results suggest
that the EnKF should be preferred in more complex navigation problems because of its scalability and tolerance to
uncertainty.

In line with the referred works, this paper proposes a visual-inertial navigation method based on discrete and
continuous-time filtering techniques to estimate in a Bayesian sense the state vector of a small motorboat, that
is, its position, velocity, attitude and sensors’ biases. The filter relies on inertial measurements, provided by an
accelerometer and a rate-gyro, and on landmark measurements provided by a panoramic camera system.

2 Problem Definition

This section presents the mathematical modeling for the problem of motorboat navigation within a known
environment.

2.1 Coordinate Systems

Consider the cartesian coordinate systems (CCS’s) illustrated in Fig. 1. Let SG = {xG, yG, zG} denote an
inertial reference system in the 3D space, with its origin in a point G, on ground, and with zG aligned with the local
vertical. Also, let SB = {xB , yB , zB} denote a local coordinate system which is fixed to the motorboat, considered
to be lying on the motorboat’s inertial sensors suite, with zB parallel to zG. Lastly, let SC = {xC , yC , zC} to be
lying on the camera’s optical center, with zC pointing to the camera forwards, and translated by rC/B with respect
to SB . SB and SC are attached to the boat and are solidary to its movement. Besides the coordinate systems in 3D
space, we define a bi-dimensional coordinate system SI = {xI , yI} for representing the position of the observed
objects in the camera’s image plane.

In any equation within this work, the reader should consider that, unless a different CCS is explicit, vectors
are in SG.

Figure 1. Coordinate systems defined for the navigation problem of a motorboat using landmark camera measure-
ments.
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2.2 Vehicle Kinematics

The body’s accelerations, aB ∈ R3, and turn rates, ωB ∈ R3, measured in SB are obtained by the equations

aB = DB
G(α) v̇, (1)

ωB = A(α)−1 α̇ (2)

where v is the vehicle’s velocity; α ∈ R3 is the vehicle’s attitude (roll, pitch and yaw angles); DB
G(α) is the

attitude matrix of SG with respect to SB ; and A(α) is the parameterization of the attitude matrix DB
G by Euler

angles in rotation sequence 1-2-3.

2.3 Inertial Sensors

Assuming that the accelerometer and gyroscope are aligned with SB , the inertial measurements are simulated
as

ãB = aB + βa + wa, (3)

ω̃B = ωB + βg + wg, (4)

β̇a = wβa , (5)

β̇g = wβg , (6)

where wa and wg are the measurement noises, modeled as zero-mean white Gaussian noise with covariances
Qwa and Qwg , respectively; βa ∈ R3 and βg ∈ R3 are the sensors’ biases, modeled as Wiener processes with
initial conditions βa(0) = βa0 and βg(0) = βg0, where wβa and wβg are zero-mean white Gaussian noise with
covariances Qβa and Qβg , respectively.

2.4 Camera System

Let pi be the position of the ith observed landmark in SG, and si be the position of the ith landmark, in SG,
with respect to SC . From the scheme presented in Fig. 2, we have

siC = DC
B DB

G (pi − r− (DB
G)T rC/B)︸ ︷︷ ︸

si

. (7)

A camera model is necessary to translate the position of the landmarks into a camera measurement, yik, which
is defined in the camera’s image plane. This work uses the pinhole camera model proposed by FORSYTH and
PONCE [11], which uses a first-order approximation of the mapping from a 3D scene to a 2D image. The measured
landmark position provided by the pinhole camera model is the one proposed by BALLET et al. [8]

yik =
f

eT3 siC

eT1 siC

eT2 siC

 , (8)

where k is a discrete time instant t = kT , with T being the camera’s sampling time; ei’s are the canonic unit
vectors1.

The pinhole camera model brings, however, some limitations. The model works well only for narrow field-
of-views (FOVs), since it has a singularity for eT3 sC , which represents the projection of the object’s position into
the camera’s optical axis. In physical terms, this singularity happens because, for an object located in an angular
position perpendicular to the camera’s optical axis, its projection does not exist.

This problem can be worked around by defining eight different camera models with a 45-degree FOV, such
that the singularity is avoided, and referred as j = {1, 2, ..., 8}. Let j be the j-th camera model and consider that
the second camera (j = 2) is rotated by 45 degrees about the yC axis, with respect to the first camera, and that the

1eT1 = [1, 0, 0], eT2 = [0, 1, 0], eT3 = [0, 0, 1]
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Foz do Iguaçu/PR, Brazil, November 16-19, 2020



Visual-inertial Navigation Applied to a Motorboat

Figure 2. Position of a landmark with respect to the camera system.

third camera is rotated by 45 degrees with respect to the second one, and so on. Then, for the j-th camera model
we have

siC = DCj

B

(
DB
G (pi − r)− rC/B

)
. (9)

with DCj

B = RyC

(
(j − 1)

π

4

)
DC
B , where RyC (γ) represents a rotation of γ radians about the yC axis.

3 Problem Solution

This section presents the proposed solution for the navigation problem.

3.1 Kinematics

For obtaining an observable model, the filter proposed in this work estimates the position of the motorboat in
the xy plane and neglects the component z of its position, which represents the height of the vehicle with respect to
sea level. For the context of navigation of a motorboat, neglecting the z component is acceptable, once this varies
slightly while the vessel travels. Then, let r′ and v′ to be the motorboat’s two-dimensional position and velocity,
respectively, and a′B to be the motorboat’s linear accelerations in SB . Then, we have

ṙ′ = v′, (10)

v̇′ = M2D DB
G(α)T

a′B

0

 (11)

where M2D is the transformation that projects a 3D coordinate into the xy plane.

3.2 State-Equation

By using the kinematic model described by eq. (10) and eq. (11), along with the inertial sensors’ measures
modeled by eq. (3), eq. (4) and eq. (5), we obtain the state equation given by

ẋ(t) = f(x(t),u(t)) + G(x(t))w(t), (12)
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where

x(t) ,
[
(r′)T (v′)T αT βa

′T
(βg)T

]T
∈ R12,

u(t) ,
[
(ã′B)T (ω̃B)T

]T
∈ R5,

w(t) ,
[
(wa)T (wg)T (wβa

)T (wβg

)T
]T
∈ R10,

f(x(t),u(t)) ,



v

M2D DB
G(α)T [(ãB − βa) 0]T

A(α)(ω̃B − βg)

0

0


,

G(t) ,



02×2 02×3 02×2 02×3

−M2D DB
G(α)T 02×3 02×2 02×3

03×2 −A(α) 03×2 03×3

02×2 02×3 I2×2 02×3

03×2 03×3 03×2 I3×3


.

3.3 Measurement Equation

The coordinates of the ith landmark in the camera’s coordinate system, siC , are taken from

siC = DC
B

[
DB
G

(
pi − r

)
− rC/B

]
. (13)

However, as the navigation filter proposed in this work does not estimate the z component of the motorboat’s

position, it works out an adaptation to eq. (13) by making rk ,

r′

0

. The coordinates of the ith landmark in SI

can be obtained by using the pinhole camera model, as in eq. (8). Let siI be the position of the ith landmark in SI .
Then, we define a discrete-time measurement model given by

hik+1(x) , siIk+1, (14)

and obtain a measurement equation for the ith landmark, given by

yik+1 = hik+1(x) + vik+1, (15)

where vik+1 is the measurement noise, assumed to be a zero-mean Gaussian noise with covariance matrix Rk+1.
In order to simulate practical limitations of the landmark identification, the simulation considers that only

landmarks within five kilometers from the camera are detected.
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3.4 Visual-Inertial Navigation Filter

The filter proposed in this work is a Continuous-Discrete Extended Kalman Filter (CDEKF) with sequential
update detailed by Bar-Shalom et al. [12]. The sequential update works around the problem of variable number
of available measurements during the estimation, since not all landmarks are supposed to be identified at a spe-
cific time instant either because they are out of camera’s range or not identified by image processing algorithms.
Algorithm 1 presents the implemented filter.

Algorithm 1 Visual-Inertial Navigation Filter

x̂1|1 ← x̄
P1|1 ← P̄
Q(t)← diag(Qa,Qg,Qβa ,Qβg )
for k ≥ 1 do

F(t) , ∂f(x(t),u(t))
∂x

∣∣∣∣
x(t)=x̂(t)

Integrate from tk to tk+1:
˙̂x = f(x̂(t),uk)
Ṗ (t) = F(t)P(t) + P(t)F(t)T + G(t)Q(t)G(t)T

with initial conditions x̂k|k and Pk|k
x̂k+1|k+1 ← x̂k+1|k
Pk+1|k ← P(tk+1)
qk ← labels of identified landmarks, at instant k
for j := 1, j <= length(qk) do

i← qk(j)

Hk+1 = dhk+1(x)
dx

∣∣∣∣
x=x̂k+1|k

ŷik+1|k = hik+1(x̂k+1|k)

PY = Hk+1Pk+1|kH
T
k+1 + Rk+1

PXY = Pk+1|kH
T
k+1

Kk+1 ← PXY
k+1|k(PY

k+1|k)−1

x̂k+1|k+1 ← x̂k+1|k+1 + Kk+1 (yik+1 − ŷik+1|k)

Pk+1|k+1 ← Pk+1|k −PXY (PY )−1(PXY )T

end for
end for

4 Conclusions

This work presented a visual-inertial navigation method for a small motorboat traveling in a GPS-denied
environment. The method is a continuous-discrete formulation of the extended Kalman filter (EKF) which allows
the estimation of the motoboat’s position, velocity and attitude, as well as the sensors’ biases.

The filter relies on inertial measurements provided by an accelerometer and a rate gyro, and on position mea-
surements from a panoramic camera system. In order to evaluate the estimation performance of the filter, Monte
Carlo simulation is performed over a real scenario where inertial sensors and camera system are simulated. The
filter estimation is compared to ground-truth data recorded from the real sea trial, which includes the motorboat’s
position, velocity and attitude.

The obtained results suggest that the proposed filter performs equivalently to GPS/INS navigation approaches.
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[10] ASFORA, B. A., 2018. Inertial-visual navigation and tracking for unmanned aerial vehicles using the en-
semble kalman filter.
[11] FORSYTH, D. & PONCE, J., 2011. Computer Vision: A Modern Approach. Prentice Hall.
[12] Bar-Shalom, Y., Kirubarajan, T., & Li, R. X., 2002. Estimation with Applications to Tracking and Navigation.
Jonh Wiley & Sons.

CILAMCE 2020
Proceedings of the XLI Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.
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