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Abstract. The aim of the present work is to investigate the underlying structure of most common bond models 

used in particle dynamics, with an aim to enable their use in additive manufacturing simulation. In this context, in 

advanced manufacturing processes proper adhesion between particles requires certain stability requirements to be 

satisfied. Conversely, erroneous agglomeration resulting from particle adhesion may affect the particle-size spatial 

distribution and thereby compromise the mechanical properties of the manufactured piece. These constitute some 

of the reasons why particle adhesion continues to be a particularly important phenomenon in a wide range of 

engineering applications. In this work, we propose a simple bond model taking into account such considerations, 

with which we are able to capture inter-particle bonding very straightforwardly once a given bonding criterion is 

met. The derived stability conditions establish recommendations that can help the selection of proper parameter 

values (such as, but not only, the strength of the bond) for most common bond models, thereby guiding (or even 

avoiding) burdensome problem-dependent calibration. Numerical examples are provided to validate our scheme 

and explore its outcomes. 
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1  Introduction 

The adhesion properties of powder particles may profoundly influence the quality of parts made by Additive 

Manufacturing (AM) processes [1]. In this context, adhesive bonding has become a key technology among the 

various industrial sectors (e.g., automotive, aerospace) that resort to AM due to its constant demand for lighter, 

more resistant, and environmentally friendly materials. In the small particles regime, wherein surface forces and 

near-field or long range interactions (i.e. electromagnetic interactions) dominate over gravitational forces and 

inertia effects (e.g., for a 1 µm diameter particle, the force of adhesion can easily exceed the force due to gravity 

by a factor greater than 106 [2]), bonding can be satisfactorily modelled through forces derived from well-

established adhesion theories, like, e.g., the classical JKR (Johnson, Kendall and Roberts [3]) theory. For heavier 

particles, however, typically of the order of at least a few micrometers and higher (100µm<), gravity and inertia 

dominate [4], and such adhesion-theory based models are no longer satisfactory. In this regime, bonding is better 

represented through phenomenological mass-spring models, which provide an attractive force to interacting 

particles whenever they come into contact, usually with stiffness given through some (oftentimes ad-hoc) 

constitutive equation or based on especial considerations on the problem at hand. In the present work, we propose 

a simple (mass-spring) bond model able to capture inter-particle sticking very straightforwardly once a given 

bonding criterion is met. Our idea is to implement it in the near future within the discrete element method (DEM) 

formulation of Campello [5], [6] and [7], and then couple it with lumped heat-transfer equations for incorporation 

of thermal effects (e.g. due to temperature gradients and external heat sources, very relevant to AM processes) 

within the framework proposed in a recent work by the authors [8]. These two tasks will be accomplished in a 

forthcoming work by the authors, already under development. Here, instead, we will concentrate on the bond 

model itself, aiming to make it available for future use in advanced manufacturing simulation. Throughout the 

text, plain italic letters ( , , , , , , , ,a b A B ) denote scalar quantities, whereas boldface italic letters                        
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( , , , , , , , , ...a b A B ) denote vectors in a three-dimensional Euclidean space. The (standard) inner product 

of two vectors is denoted by u v , the norm of a vector by u u u  and the absolute value of a scalar by

a . Notation with a superposed dot is adopted to designate time derivatives. 

2  Force potentials for attraction and repulsion 

In several modeling approaches, such as molecular dynamics, pairwise attractive and repulsive interactions 

between particles of a system can be described through force potentials. For a particle i  interacting with another 

j , if we only consider the central (normal) direction, we can say that i experiences a one-dimensional motion 

described by a coordinate r along this direction, in which it is both attracted to and repulsed from j , which in 

turn has coordinate jr . In these conditions, force potentials representing the motion of i  have the following 

general form 

 ,1 2 1 2
1 1

( )

m n
m n

j j
j j

r c r r c r r c c
r r r r

 (1) 

where jr r is the distance between i  and j  and 1c , 2c , m and n  are nonnegative constants ( 1 2, 0c c  and 

, 0m n ). One well-known example of such potentials are the Mie´s potentials, of which the classic Lennard-

Jones potential [9] is a special case. These potentials may likewise be written as  

 ,1 21 11 2

1 2

( )
1 1j j

k k
r r r r r  (2) 

wherein the k ´s and ´s are nonnegative. Accordingly, the force acting on i  due to its interaction with j  reads 
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The positive term on the right hand side of ( )f r  stands for the attractive part of the interaction, whereas the 

negative term for the repulsive one. A necessary and sufficient condition for the interaction to have an equilibrium 

configuration is that the potential have a stationary point r req , such that  
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from which it follows  
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In the eq. (5), req  represents the equilibrium position of i  w.r.t. j  in their central direction and d r req eq j

is the equilibrium distance between them. A necessary and sufficient condition for eqr  to be stable is that the 

potential be a minimum at eqr , i.e., ( )r  should be locally convex around eqr .  By imposing that the second 

derivative of  shall be positive at eqr , and taking (5) into consideration, it follows that 2 1 , which is the 

requirement for stability of the interaction. Still, by differentiation of eq. (4) we obtain the inflection point of the 

potential, critr , from which it follows that 

 where is the critical distance of the interaction .
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  (6) 
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3  Attraction and repulsion upon contact 

In the interaction of two objects that are in contact, attractive forces might appear1 besides the repulsive 

(contact) force they experience. Contact interactions between particles are often described through the amount of 

overlap (or local penetration) experienced by the particles, i.e., based on the distance between the centers of a 

potential contact pair. Models that follow such an approach are commonly referred to as soft-sphere models [5].  

If we call such overlap by , and substitute 1
r rj  by  in equation (3), we arrive at:  

 
is the stiffness of the atractive part

is the stiffness of the repulsive part    
, where1 2 1

1 2
2

( )
k

f k n k n
k

  (7) 

The equilibrium configuration of the interaction, if it exists, happens at an equilibrium overlap given by 

 

.
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k
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Opposed to eq. (5), here the base of the exponentiation now has the stiffness of the attractive term on the numerator 

and that of the repulsive term on the denominator, as a consequence of the reciprocal analogy established between 

 and r rj . By imposing eq  to be a stable configuration (similarly as done for eqr  in the previous section), we 

arrive at 

 
,2 1
  (9) 

i.e., the exponent of the contact term must always exceed that of the adhesion term. In addition, the critical overlap 

of the interaction (i.e., the overlap at which it loses stability) reads 

 where is mandatory for an ever-stable contact-adhesion interaction

1

2 1
1 1

2 2

, .crit crit

k

k
  (10) 

If eq. (10) is satisfied and the bonding criterion is met2, then the attractive-repulsive interaction arises and the bond 

is established, in which case it will evolve into a harmonic oscillation around the equilibrium configuration eq . 

Such oscillation can be viewed as the motion of a one degree of freedom mass-spring oscillator governed by the 

following second-order differential equation  

 , or , with and ,( ) ( ) ( ) i j
eq eq eq

i j

m m
m f m x f x x m

m m
  (11) 

where m is the effective mass of the oscillation and f  is the (nonlinear) restoring force provided by the spring 

on m , which is given through eq. (7). A special case of the repulsive part of equation (7) is that of Hertzian 

contact (see Johnson [10]), which can be obtained by setting 

 and where and2 2 2 2

4 3
, ,

3 2 (1 ) (1 )

i j i j

i j j i i j

r r E E
k E r r E

r r E E
  (12) 

where r  and E  are the so-called effective radius and effective elasticity modulus of the contacting pair (in 

which ir  and jr  are the radii of particles i  and j , and iE , jE , i  and j  their elasticity moduli and Poisson 

coefficients, respectively). It follows that the equilibrium overlap is 

 
1 E.g., due to melting of their surface materials, or to chemical reactions that may ultimately glue or weld the bodies 
2 E.g., the temperatures of the particles reaching a certain critical temperature, like their melting temperature, or the 

concentration of chemical substances reaching a certain critical concentration. 
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whereas the critical overlap is 
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1
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k
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4  Our bond model for DEM advanced manufacturing applications 

Based on equations (7) and (12), the bond model herein proposed has the following  expression for the elastic 

part of the interaction (i.e.., the spring force): 

 

3/24
,

3
adhel

ij ij ij adh ij ijE r kf n n
  (15) 

where 
el
ijf is the elastic force that acts on i  due to its attraction-repulsion with j , ijn  is the central direction of the 

interaction (the unit vector that points from the center of i  to the center of j ) and adhk  and adh  are the stiffness 

and the exponent of the adhesion part of the force, respectively. Let us now define a normalized overlap or 

deformation,  

 

,ijij
r   (16) 

in which r is the effective radius of the pair, as given in eq. (12). Accordingly, the elastic force on i  can be 

rewritten as 

 

3/2 3/224
,
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where 
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From (17), the equilibrium and critical deformations read 

 

and ,

1 1
3/2 3/2

,eq ,crit
2
3

adh adh
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con con

k k
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and their corresponding overlaps are ,eq ,eqij ij r and ,crit ,critij ij r .  

Remark: The value of the adhesion stiffness dictates how more or less overlapped the particles will be once the 

bond is established, i.e., it dictates the magnitude of ,eqij  or ,eqij . It is not at all connected to whether the particles 

will or will not stick. In this latter aspect, what makes the particles stick (i.e., establish the bond) is having 

,critij ij  while at the same time fulfilling the bonding criterion (like having the particles´ temperatures attaining 

a certain critical temperature, as said before), irrespective of the value of adhk  (and, consequently, of adhk ). 

According to Hertz’s contact theory, the maximum penetration of two contacting spheres of approaching 

velocity ,relijv  (i.e., pre-collision relative velocity) in the absence of external forces is 

 

,

2
52

,rel
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which follows from integration of the differential equation that describes their relative motion. By enforcing 

,max ,critij ij , as to trigger the bond, it follows that 

  .

2 1
5 3/2

5

4

,rel
16

15 2
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adh adh
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kE r
v

m E r
  (21) 

 

Equation (21) is a necessary (although not sufficient) condition for the bond to be established. Additionally to the 

elastic force given by eq. (15) a viscous term is introduced in our model, which essentially represents a damper in 

the mass-spring oscillator, allowing the particles to dissipate their energy in the central direction. Considering a 

damper of damping constant d , we write this dissipative term as 

 
,d

ij ij ijdf n
  (22) 

where ij  is the relative velocity of the particles in their central direction. In analogy with the equation of motion 

of a linear mass-spring-damper oscillator of mass m , stiffness k  and damping constant d , we take 

 
,2 bondd m k
 (23) 

in which bond  is the damping rate of the oscillation, which is a model parameter that must be given. For the spring 

stiffness that enters the above equation, we take 

 where  is the force on the spring .
11/22 adh

el
ij el el

ij adh adh ij ij ij
ij

df
k E r k f

d
f   (24) 

From the above considerations, the total interaction force in this model reads  

 
,

, and the bond criterion is met ,

,con d con
ij ij crittot

ij el d
ij ij crit

IF

IF

f + f
f

f + f
  (25) 

where 
con
ijf  is the contact force in case there is no bonding, herein given by the purely Hertzian expression, and 

,d con
ijf  is its dissipative (viscous damping) term, given by 

 with
1/4, 2 2 .d con con con con

ij ij ij ijd d E m rf n   (26) 

Here, con  is the corresponding contact damping rate (i.e., the rate for purely contact interactions), which must be 

given. At the implementation level, similarly as it happens for damped, purely contact interactions, one should 

always check the consistency of the sign of the total interaction force. Accordingly, for ,critij ij , if 0tot
ijif n  

then one must set 
tot
if o , as to avoid an attractive contact force, which obviously makes no sense. For the 

same reason, for ,critij ij , if ,eqij ij  and 0tot
ijif n , then totif o , whereas if ,eqij ij  and 0tot

ijif n , then 
tot
if o  (this ensures an ever-restoring total interaction force for the bond).  

5  Numerical examples 

Let us illustrate the above bond model by analyzing two simple numerical examples with our (in-house) 

DEM code. We remark that more elaborate, multi-particle examples are currently being analyzed by the authors 

and shall appear soon in a forthcoming journal paper. 

5.1 Bonding of two particles in a central collision (1): assessing the equilibrium configuration

Here we show one simple validation problem involving the bonding of two particles in a central collision. In 

particular, we want to evaluate whether the bond is established and, in case yes, if the expected equilibrium overlap 
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is attained for varying values of the bond damping rate bond , according to the formulation proposed in Sec. 4. Let 

us consider two same-sized particles with radii m0.001ri  approaching each other at a relative (central) velocity 

of 2.6 m/s (this is slightly greater than the critical velocity of eq. (21) and, thereby, should trigger the bond). The 

mass-density of the particles is kg/m32000i  and their elastic properties are GPa1Ei  and 0i , respectively. 

The equilibrium overlap is set to 0.00005,eqij m, from which the adhesion stiffness 51.05 10kadh  follows (the 

adhesion exponent adopted is 1adh ). The time-step size adopted in the time numerical integration (explicit) 

was s75 10t , whereas the final simulation time was s0.005t . In Fig. 1, we plot the evolution of the 

particles´ overlap in time for different values of bond  (only the relevant time interval is represented). As expected, 

we observe that not only the bond is established for all values of bond , but also the overlap converges to the 

predefined equilibrium overlap irrespective of bond . We can see, too, that for lower values of bond  a greater 

amplitude around the equilibrium overlap is observed in the earlier stages of the interaction, which then 

progressively diminishes towards a static “stick” configuration. One should be careful with such great amplitudes 

because, if exaggerated, they may overcome the stable range of the interaction and thereby trigger instabilities and, 

in the extreme case, even lead to a loss of contact. This may be easily overcome in the model by adopting a 

sufficiently high value for bond , which will damp the oscillation from the beginning.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2  Bonding of two particles in a central collision (2): parametric studies 

Here we investigate the outcomes of a central collision in terms its coefficient of restitution for varying mass 

densities of the particles. The geometrical and material data are the same as from the previous example (except for 

the mass density), as well as the time-step size and the final simulation time. A critically damped bond ( 1bond ) 

is assumed for all cases.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 2. Example 5.2 Restitution coefficient 𝑒 plotted as a function of the impact velocity. Analysis results. 

Figure 1. Example 5.1 Particles’ overlap plotted against time. 
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As we can see from Fig. 2, the particles stick to each other irrespective of their mass density, as expected.  

Fig. 3 plots the critical velocities for each case, which is seen to be inversely proportional to the particles’ densities 

(i.e., for lower density values a higher velocity is required to overcome the critical overlap crit  and thereby initiate 

the sticking regime).  

6  Conclusions 

The purpose of this work was to present the first results of an on-going research, intended to devise a mass-

spring bond model to capture inter-particle bonding, aiming at advanced manufacturing applications. We find the 

model to be reasonably simple and straightforward to be implemented by engineers and analysts interested in the 

field. Also, as it could be seen from the first results, it proved to work very well for the purposes envisioned. The 

application of the model to the simulation of multi-particle systems (in particular, to AM processes) is under work 

and shall appear soon in a forthcoming paper by the authors.  
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Table 1. Values of critical velocities
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