
 
 

CILAMCE 2020 
Proceedings of the XLI Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC  

Foz do Iguaçu/PR, Brazil, November 16-19, 2020 

Development and implementation of software using the Direct 
Stiffness Method and Symbolic MATLAB proposing the improvement 
of teaching and learning processes of matrix methods in civil 
engineering graduation classes 

Guilherme O. Berbert-Born1, Gilberto Gomes1 

1 Department of Civil and Environmental Engineering, University of Brasília 
Campus Darcy Ribeiro, 70910-900, Distrito Federal, Brazil 
guiborn.eng@gmail.com, ggomes2007@gmail.com 

Abstract. The emergence of new programming languages and philosophies allowed the possibility of more 
efficient calculation techniques in various engineering fields. Such techniques most often displays the result of 
processing without making possible for the user to visualize the process itself. This can bring difficulties to fully 
understand the method, impairing didactic purposes that might involve its use. The AESYM is a new structural 
analysis program written in MatLab language which uses the Direct Stiffness Method. This method consists in 
analyzing reticulated structures, statically determinate or indeterminate, based on the superposition principle, 
considering linearity between actions and displacements. The method assumes that the effects of rotation and 
translation of the bar elements in given structure due to multiple stimuli can be obtained by the combination of the 
effects caused by each stimulus individually. With the AESYM, the user can follow the calculation process both 
symbolically and numerically, allowing the understanding of the linear elastic analysis in a didactic and visual 
way. This makes possible for the user to observe the global stiffness matrix formation process along with its 
properties, displacements and forces in the elements through the resolution of the equation which governs the 
structure’s internal behavior. The AESYM has, therefore, practical use in matrix methods teaching-learning 
process within graduation level engineering courses. 

Keywords: Direct Stiffness, Structural Analysis, Teaching-learning processes, Symbolic MATLAB. 

1  Introduction 

The appearance of new tools and the increasingly higher processing power for computers enables more and 
more the use of techniques for complex problems. Adapted procedures involving modelling and graphical interface 
programming conditioned better use of numerical methods such as the Finite Element Method (FEM), clarified by 
Assan [1] and the Boundary Element Method (BEM), as exposed by Brebbia and Dominguez [2], both widely 
used for solving engineering problems. 

It is observed that most of the computer programs for structural analysis return numerical results without the 
due transmission of the calculation method and procedures. As a result, it is difficult to understand the processes 
used to obtain efforts and displacements in structures. In the case of the Direct Stiffness Method (DSM), shown 
by Soriano [3], it is of great importance for the teaching-learning process to visualize the matrix assembly process, 
as well as the solution for the equations systems. 

With this work, the use of matrix calculations and DSM applied to the MATLAB programming language [4] 
are used in order to develop a new visual and symbolic platform that can be used as an auxiliary tool in the teaching-
learning process in the disciplines of undergraduate structural analysis courses. The use of symbolic language 
allows a better understanding and visualization of the elements that make up the calculation of beams, trusses and 
flat frames. In addition, the creation of AESYM seeks to return to the user, not only global and local results, but 
also the process of assembling matrices and solving the system of equations to obtain forces and displacements. 
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2  The Direct Stiffness Method 

 The Direct Stiffness Method (DSM) can be used to resolve isostatic and hyperstatic reticulated structures, 
where the displacements and rotations are unknown. Using the principle of superposition and assuming linear 
analysis, the method combines effects caused by individual stresses, obtaining global solutions for forces and 
displacements. 
 Based on Hooke's Law, clarified by Hibbeler [5], which relates strain and elasticity of a body to the 
stressing action, a system can be set up from which the global forces and displacements can be obtained for each 
node in the structure. In order to obtain the Global Stiffness Matrix (GSM), the local stiffness matrices for each 
element of the structure must be accumulated, these being the Degrees of Freedom (DOFs) of the truss and frame 
elements flat, together with the rotation matrices used indicated in Tab. 1, for each case, as shown by Halliday, 
Resnick and Walker [6]. 

Table 1 – Degrees of Freedom (DOFs), Local Stiffness Matrices and Rotation Matrices. 
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 In order to accumulate the local stiffness matrices and to assemble the GSM, each local matrix must be 
rotated, that is, it must have its local coordinates changed to global so that the axis orientations coincide. The last 
row of Tab. 1 represents the rotation matrices, obtained from the direction cosines of the bars, which are used with 
each local matrix in eq. (1) 

 [K] [ ] [k] [ ]T
G eR R= ⋅ ⋅   (1) 

to obtain the global matrix. For such, the vectors of forces and global displacements have their formats represented 
in eq. (3) and eq. (4), where n is the number of the first node. Once imposed the support restrictions in the vector 
of global displacements and obtained the GSM, the system can be solved using Hooke’s Law. For this, the “one 
and zeros” technique (setting the lines and columns corresponding to restricted DOFs to zero and their intersections 
to one) is applied in order to obtain the unknown displacements. 

 1 1 1[ ] [ , , , , , ...]nx ny nz n x n y n zF F F M F F M+ + +=        (3) 

       1 1 1[U] [ , , , , , , ...]nx ny nz n x n y n zu u u uθ θ+ + +=  (4) 

At last, the Rotation Matrix is once again used to obtain the displacements and local forces given the global 
displacement and forces vectors. This can be done by using eq. (5) and eq. (6), respectively 

 [ ] [U]'u R= ⋅   (5) 

 [ ] [ ]ef K u= ⋅  . (6) 
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3  Computational implementation 

3.1 Pre-processing and modelling 

 The analysis of cross-linked structures using the DSM requires that not only the layout of the elements 
and nodes be known, but also certain factors that influence the overall behavior of the structure. These factors 
include boundary conditions (supports), concentrated and distributed loads, temperature variations (uniform or 
not), imposed displacements (settlements), cross-section geometry (area and moment of inertia) and the material’s 
Elasticity Module. 
 AESYM allows the user to model the structure and insert its properties. The modeling interface of the 
program, shown in fig. (1), collects the model information and fills eight matrices obtained from the table fields. 
 

• “L1” Matrix - General structure information (number of nodes, number of elements, number of 
restricted nodes, number of loaded nodes and number of loaded elements); 

• "L2" Matrix – Structure node coordinates; 
• “L3” Matrix –Each element’s starting and ending nodes, as well as its properties (area, moment of 

inertia and modulus of elasticity). 
• "L4" Matrix - Restrictions on x, y and θ in nodes; 
• “L5” Matrix - Concentrated loads at nodes; 
• "L6" Matrix - Distributed loads in the elements; 
• "L7" Matrix - Imposed displacements on x, y and θ at nodes; 
• "L8" Matrix - Coefficient of thermal expansion, temperature variation and section height 

 
These matrices will be used in DSM processing and can be stored and loaded into the computer's memory, 

through the “Save / Open” menu. This menu gives access to a structure manager, in which the user can save, open, 
view or delete models. 

 

 

Figure 1. AESYM’s modelling interface 

3.2 DSM processing 

 Once the property matrices are obtained, the calculation process is initiated at the “Calculate” button. The 
first step of the calculation is the analysis of the “L1” matrix, necessary to limit the recursive functions (loops) and 
repeat the same procedures for all members and nodes. 
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Figure 2. DSM Processing Flowchart 

 The first stage of the processing is the Global Forces Vector obtention. The concept of equivalent loads, 
exposed by Martha [7] is used to obtain the reactions in each element of the bar separately, with the efforts being 
concentrated on the nodes and later added to other bars with common nodes. In the event of temperature variation 
or settlement, this vector is also changed. This vector’s size is three times the number of nodes, representing the 
forces at x, y and the moment at each node. 
 The second stage consists of the calculation of the Global Stiffness Matrix (GSM). For each element of 
the structure, the director cosine is calculated, which represents the slope of the bar. Then, the physical and 
geometric properties of the element are inserted in the Local Stiffness Matrix (LSM) and the Rotation Matrix is 
assembled. With this, it is possible to rotate the local matrix using the eq. (2) for the assembly of the GSM, 
consisted of the sum of all local rotated matrices. 
 The third step of the processing is the imposition of the support restrictions. Starting with the “L4” Matrix, 
the GSM and the Global Forces Vector are manipulated to suit the boundary conditions. For each restricted DOF, 
the corresponding row and column in the GSM is set to zero, being the value of the intersection between them set 
to 1. In addition, the Global Forces Vector is set to zero at the corresponding restricted DOF row. In the case of 
imposed displacements, the value of the corresponding force is equal to the displacement, in meters. The support 
settlement is then subtracted from all other forces of the vector, multiplied by the corresponding value in the GSM, 
as shown by Martha, [7]. 
 Once the GSM and the Global Forces Vector are ready, the next step is the resolution of Equilibrium 
Equation and the calculation of the displacements. From the resulting Global Displacement Vector, the Deflection 
Diagram is plotted based on the starting and ending position of each node. 
 In order to obtain the values of the internal forces, the Rotation Matrix and the LSM are once again used, 
as well as the physical and geometric properties of each element. This is done by calculating the local 
displacements using eq. (5) and eq. (6). After that, the internal forces and the support reactions are determined 
according to local coordinates. A “Sl” matrix is created, in which the lines represent each element of the structure 
and the columns number is six, containing the initial and final values of axial forces, shear forces and bending 
moments in the element.  
 After the internal forces of the member are determined, the diagrams are plotted using the nodes and 
members coordinates along with the initial and final positions of each node consisting the Global Displacement 
Vector. The AESYM plot navigation buttons are used to navigate through 6 different resulting plots: Structure 
with loads (CARG button), Structure without loads (EST button), Structure Deflection (DEF button), Axial Force 
and Support Reactions Diagram (DEN button), Shear Force Diagram (DEC button) and Bending Moment Diagram 
(DEM button) 
 The last step is the determination of the symbolic stiffness matrices. All the mentioned procedures are 
repeated without numerical values being inserted in the local matrices. The MATLAB Symbolic ToolBox is used 
to make symbolic calculations. The Local, Rotation and Global matrices obtained are stored for post-processing 
stage user visualization. 

3.3 Post-processing and results 

At the end of the calculation process, the user may access the results on the interface. Diagrams, numerical 
results, symbolic and numerical matrices can be viewed globally or locally, as shown in fig. (2). The diagrams 
obtained during processing are available immediately after their completion, accessed with the plot navigation 
buttons. 

The numerical results are the values for support reactions, internal forces and global displacement. The 
matrices (local, rotation, rotated and GSM) can be visualized by checking the “Mostrar Matrizes” checkbox. 
Within the menu, the user may also navigate between the global results (button "Estrutura") or local (member) 
results (button "Elementos"), both located in the lower left corner. 

The numerical and symbolic GSMs can also be accessed using the side navigation buttons. The symbolic 
matrix is plotted with LaTex, and the user can interactively browse by dragging the cursor across the matrix. The 
numerical matrix is presented in the form of a table where columns and rows have customizable size. The font size 
in each matrix can be changed in order to improve the visualization. 
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For the visualization of local results, the “Elementos” button may be pressed, which will open a window with 
a list of the structure elements. When selecting an element, the user is able to see its properties, internal forces and 
displacements. In addition, the buttons “Matriz de Rigidez Local”, “Matriz de Rotação” and “Matriz Rotacionada” 
can be used to show the corresponding local stiffness, rotation or rotated matrix. 

 

  

Figure 3 – Global Forces and Displacements Window / Local Results and Local Stiffness Matrix 

4  Conclusions 

The visual interface allows the user greater control over modeling, as well as more speed and practicality. 
Still through the interface, results can be obtained in a simpler and more controlled way, in addition to the 
possibility of greater understanding of the DSM and the structure's behavior. Thus, AESYM is a program with 
great educational potential for academic purposes. 

Thus, the convenience of using DSM in computational implementation is notable, since in this environment 
there are powerful tools for matrix calculations. Another advantage of this implementation is its adaptability and 
for the most diverse purposes. Compared to the results of the educational structural analysis software FTool, 
developed by Martha [8], the calculations made by the AESYM have shown good precision and liability. 
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