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Abstract. Mixed finite element formulations are used to approximate stress and displacement variables simultane-
ously for Poisson problems. The purpose of this article is to analyze new discrete mixed approximation based on
the application of enriched version of classic Poisson-compatible spaces. With that purpose we decided to measure
the computational cost of applying four formulations for two Poisson problems with known exact solution. The
first model considers a smooth sinusoidal solution and the second model has a high gradient solution. The objec-
tive is not to compare which formulation is better, but rather to highlight characteristics of computational cost and
the errors obtained for both the primal and dual variables. Weak formulations correspond to the use of the FEM
using continuous and discontinuous functions, using the mixed method and the enrichment mixed method. In the
algorithms developed, we computed the error in L2 and H1 norms and we measured the computational cost of the
assembly and solving processes. When analyzing these costs together with the errors obtained, we visualized that
the cost of enriched version is less expensive computationally than non-enriched version, however they getting the
same approximation errors.
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1 Introduction

In applications, many problems are formulated as boundary value problems for second order elliptic dif-
ferential equations, one simplest form is the Poisson equation. Different finite element formulations have been
developed to solving numerically these problems. For the approximation of primal variable a H1-conforming
weak formulation has proven to be efficient. The H1-conforming weak formulation is based on continuous finite
element approximation spaces. Another good option is to use methods which are mainly based on discontinuous
approximation spaces, non conforming, called Galerkin discontinuous spaces (GD), Forti [6].

When the accuracy of the flux (dual variable) is the quantity of interest, an approximation by taking the
gradient of H1 or GD approximate solutions leads to lower-order accuracy. An alternative formulation is the dual
mixed H(div)-conforming method, Brezzi [1], it is based on simultaneous approximations of the primal and the dual
variables. In its formulation the approximation spaces for primal and dual variable are required to be compatible
(satisfying the equilibrium condition) to obtain a numerical scheme which is both consistent and stable. Using the
H(div)-conforming formulation, Devloo [4] has proposed to enrich the space of the dual variable by increasing
the order of the polynomials that form the vector bubble polynomials inside the finite elements. This enrichment
means to increase by one the degree of the polynomials used to construct the vector bubble functions inside the
elements. In this work, we intend to analyze Devloo’s recent proposal numerically. In our analysis we have verified
the theoretical convergence rate for smooth solutions.

However, comparing the errors obtained between the mixed method and the enriched mixed method, we
observe that the enriched method of order k corresponds to the mixed method of order k + 1. Thus we carry out
a simple study to determine the orders (levels) of the methods that must be compared. With this, the enriched
version has a lower number of dofs and therefore lower computational cost, obtaining practically the same errors.
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Motivated by these characteristics, we decided to compare the processing time, assembly process and resolution
of the linear system together, with three other formulations. The computational cost of the assembly and solver
processes was calculated in clocks ticks. The clock ticks depend on the configuration of the system and the
application, therefore, the numerical experiments presented have been carried out on the same computer.

The implemented formulations are: (a) the classicalH1 weak formulation (continuous); (b) the non-symmetric
discontinuous Galerkin formulation by Baumann, Oden and Babuska, Baumann [2]; (c) a mixed H(div)-conforming
formulation, de Siqueira [3]; (d) a enriched mixed H(div)-conforming formulation, Devloo [4] Farias [5]. Static
condensation is always used for continuous, mixed H(div)-conforming and enriched mixed H(div)-conforming
formulations. For more details over how the static condensation is applied in the continuous and mixed H(div)-
conforming formulations see Forti [6], and in enriched mixed H(div)-conforming formulation see Farias [5].

2 Finite element formulations

Consider the model Poisson problem written in the form

−∇ · (K∇u) = f, in Ω (1)

u = 0, on ∂Ω, (2)

defined in a region Ω ⊂ R2, K is a symmetric, bounded, and uniformly positive definite matrix, and f ∈ L2(Ω).
Let be Mh a mesh of the quadrilateral elements on Ω where Ne is the number of elements. Each quadrilateral
element is represented by Ωe and Qp(Ωe) is a set of hierarquical polynomial functions of degree p on Ωe. Details
over the construction of shape functions see in Devloo [7]

2.1 H1-conforming formulation

The weak formulation for problem (1)-(2) reads: find uh ∈ H1
0 (Ω) such that

(K∇uh,∇vh)Ω = (f, vh), ∀vh ∈ H1
0 (Ω).

2.2 Galerkin discontinuous formulation

The discrete version for the GD weak formulation is constructed over the broken polynomial spaces

Vp(Mh) = {v ∈ L2(Ω); v|Ωe ∈ Pp(Ωe),∀Ωe ∈Mh}.

The discrete weak formulation presented in Baumann [2] for the model problem is: Find uh ∈ Vp(Mh) such that
Ne∑
e=1

∫
Ωe

∇uh · ∇vhdΩe +

∫
∂Ω

(uh∇vh · n− vh∇uh · n)ds+

+

∫
Γi

(< ∇vh · n > [uh]− < ∇uh · n > [vh])ds =

Ne∑
e=1

∫
Ωe

fvhdΩe

for any vh ∈ Vp(Mh). Γi is the union of all interelement boundaries called interfaces. Each interface Γrl is a

common boundary (codimension 1) between two quadrilateral elements Ωer (right element) and Ωel (left element).
The operators are: < ∇vh · n >= 1

2 (∇ver · ner +∇vel · nel) and [vh] =
(
vh|∂Ωer∩Γrl

− vh|∂Ωel
∩Γrl

)
.

ne refers to the outward unit normal of the boundary ∂Ωe.

2.3 H(div)-conforming mixed finite element formulation

Given finite-dimensional approximation spaces Vh ⊂ H(div,Ω), Uh ⊂ L2(Ω), consider the discrete mixed
formulation for the model problem: Find σh ∈ Vh ⊂ H(div,Ω), uh ∈ Uh ⊂ L2(Ω) satisfying

(σh,q)Ω − (uh,∇ · q)Ω = 0, ∀q ∈ Vh,

−(∇ · σh, v)Ω + (f, v)Ω = 0, ∀v ∈ Uh.

For k ∈ N, vector and scalar polynomial approximations spaces V̂k and Ûk are defined in master element K̂,
which are assumed to be divergence compatible: ∇ · V̂k ≡ Ûk. To compose Vh and Uh, the order of the
polynomials in V̂k is p = k + 1 when in Ûk is p = k.

CILAMCE 2020
Proceedings of the XLI Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.
Foz do Iguaçu/PR, Brazil, November 16-19, 2020
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2.4 Enriched mixed finite element formulation

Consider two divergence compatible spaces, a vector polynomial space V̂k and a scalar polynomial space Ûk,

defined in K̂ as in 2.3, k ∈ N. Suppose that a direct decomposition V̂k = V̂∂
k ⊕

˚̂
Vk holds, where ˚̂

Vk indicates
the flux functions with vanishing normal components over ∂K̂. Otherwise, the functions in V̂∂

k are assumed to
have normal components over ∂K̂ of degree k.
Under these conditions, a enriched version V̂+

k , is defined by adding to V̂k higher degree internal shape functions

of the original space at level k + 1, while keeping the original border fluxes at level k, V̂+
k = V̂∂

k ⊕
˚̂
Vk+1. The

corresponding enriched potential spaces are now Û+
k = ∇ · V̂+

k = Ûk+1. Then, the approximation spaces Vh ⊂
H(div,Ω), and Uh ⊂ L2(Ω) are defined in terms of local space configurations {V+

k (K), U+
k (K)}, backtracked

from {V̂+
k , Û

+
k } by adequated transformations. For more details, see Castro [8], Farias [5].

3 Numerical results: Poisson problem models

3.1 Poisson problem with sinusoidal exact solution

Consider the Poisson problem (1)-(2) with exact solution:

uexact = Sin (πx)Sin (πy) , (3)

and choose f = −∆uexact, Ω = [−1, 1]2, and Dirichlet boundary conditions accordingly.

The exact solution is showed in “Figure 1a)”.

Figure 1. a) The exact solution, Equation (3) (left). b) The exact solution with high gradient, Equation (4) (right).

The model 3.1 is used to verify the characteristics of the enriched mixed method. The first verification carried out
is on the behavior of the convergence of the method when we increase the order, from p = 2 to p = 7. According
to the theory, the convergence is presented in the figure ”Figure 2”.

Figure 2. Enriched mixed method: Log(Error) vs Log(CDoFs) - three uniform h-refinements, varying p = 2, ..., 7.

It was verified that the mixed method of order k and the enriched mixed method of order k have the same number
of condensed degrees of freedom. Also, it was verified that the rate of convergence of the enriched mixed is equal
to k + 1 while the mixed is equal to k, see 1.
From this result, we suspect that the comparison of the enriched mixed method of order k and the mixed method of
order k are not equivalent. We observe that the enriched mixed method uses order k + 1 to construct Û+

k and V̂∂
k ,

and it uses order k + 2 to construct ˚̂
Vk+1. This means that the equivalent version of the enriched mixed method

of order k is the mixed method of order k + 1. Based on this conclusion, we decided to also compare the mixed
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Table 1. Validation of the rate of convergence of the error in L2 norm, p = 2.

Enriched Mixed Mixed Galerkin discontinuous H1

h
Error Rate of

||.||L2 converg.

Error Rate of

||.||L2 converg.

Error Rate of

||.||L2 converg.

Error Rate of

||.||L2 converg.

0.25

0.125

0.0625

0.03125

1.24E-04

7.89E-06 3.981

4.95E-07 3.995

3.10E-08 3.999

2.14E-03

2.69E-04 2.992

3.37E-05 2.998

4.21E-06 2.999

7.54E-02

2.35E-02 1.680

6.28E-03 1.905

1.60E-08 1.975

3.86E-03

4.90E-04 2.979

6.15E-05 2.995

7.69E-06 2.999

method of order k + 1 with the classic FEM of order k + 2 for a not very smooth model, but without reaching
discontinuity. We consider a model with a high gradient in the next section.

3.2 Poisson problem with high gradient in the exact solution

Consider the Poisson problem (1)-(2) with exact solution:

uexact = 0.4
[π

2
− arctan

[
10
(
1− 20(x2 + y2)

)]]
, (4)

and choose f = −∆uexact, Ω = [−1, 1]2, and Dirichlet boundary conditions accordingly. Strong gradients in the

proximity to the circumference centered at the origin, with radius 1
4 . The exact solution is showed in “Figure 1b)”

Table 2. Error in L2 norm for model with high gradient. h = 0.0625

k
Enriched Mixed

p = k

Mixed

p = k + 1

GD

p = k + 2

H1

p = k + 2

2

3

4

5

6

7

0.888524

0.375360

0.263106

0.114205

0.053405

0.021689

0.888524

0.375360

0.263106

0.114205

0.053405

0.021689

0.896943

0.378554

0.261382

0.113495

0.053905

0.021839

0.888532

0.375351

0.263105

0.114202

0.053403

0.021687

Table 2 shows the errors in the L2 norm obtained for the four formulations for the high gradient model. Observe
how close the values are when comparing with the corresponding order for the classical FEM method, the mixed
method and the enriched mixed method. The errors of mixed method and enriched mixed method are practically the
same (they differ in millionths). Only the discontinuous Galerkin formulation has errors that are slightly different
from the other methods and with less approximation.

Table 3. Error in H1 norm for model with high gradient. h = 0.0625

k
Enriched Mixed

p = k

Mixed

p = k + 1

GD

p = k + 2

H1

p = k + 2

2

3

4

5

6

7

2.66244

1.35876

0.881271

0.470638

0.272517

0.164937

2.65971

1.35681

0.880457

0.469961

0.272356

0.164794

2.98315

1.47133

0.981287

0.523247

0.318146

0.195961

2.90992

1.44733

0.97537

0.514667

0.310241

0.191546

Table 3 shows the errors in the H1 norm for the high gradient model. Note that the approximation of the mixed
methods in terms of the H1 norm are very close. The mixed method approach is the best. The classical FEM
method is no longer as approximate as the mixed ones and the discontinuous Galerkin is the least accurate.
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Table 4. Computational cost comparing with the time processing of the mixed method

k
Mixed (p = k + 1)

clock ticks

Enriched Mixed (p = k)

percent over Mixed

GD (p = k + 2)

percent over Mixed

H1 (p = k + 2)

percent over Mixed

2 36716408 70% 191% 15%

3 61778717 76% 298% 18%

4 103661465 82% 456% 21%

5 184144380 84% 530% 23%

6 317469280 87% 568% 24%

7 536448242 90% 592% 25%

Table 4 comparatively presents the computational cost (clock tickts) of the enriched mixed methods, discontinuous
Galerkin and classical FEM relative to the time used by the mixed method. We observed that the enriched mixed
method was up to 70% smaller than the mixed method, and yet the errors obtained were very similar (Table 3).
The discontinuous Galerkin method has the worst performance (static condensation is not useful).

4 Conclusions

The enriched mixed method was verified to satisfy the theoretical properties of convergence. The enriched mixed
method of order k has been shown to achieve an approximation equivalent to that of the mixed method of order
k + 1. However, its computational cost is up to 30% lower, since it considers fewer degrees of freedom because it
has fewer vector functions associated with the one-dimensional sides of the master element. Certainly, the classical
finite element method has a much lower computational cost, even considering order k + 2 or greater and a better
approximation in norm L2 of the primal variable.
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