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Abstract. Monte Carlo simulation techniques, applied to structural reliability analysis, have always al-
lowed the solution of complex, large and non-linear problems. However, these techniques demands a
high computational cost in problems presenting small probability of failure. In this context, intelligent
sampling techniques are used to reduce the number of simulations needed to solve structural prob-
lems, reducing the processing time. This paper addresses a study on different combinations of sampling
strategies, such as the Latin Hypercube Sampling, Antithetic Variates Sampling, Asymptotic Sampling
and Enhanced Sampling, all applied within the Monte Carlo technique. The models are applied to
benchmark problems in Linear Elastic Fracture Mechanics, more specifically those ones presenting ana-
lytical solution. The advantages and limitations of each method are discussed based on the accuracy of
the probabilistic response and the associated computational cost.

Keywords: Linear Elastic Fracture Mechanics, Monte Carlo simulation, Asymptotic Sampling, En-
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1 Introduction

Crack propagation analysis is a relevant field of study in structural analysis, being the Linear Elastic
Fracture Mechanics (LEFM) a possible approach (Broek [1]). Recent studies address the subject in the
light of a probabilistic modeling (Leonel [2]; Huang and Aliabadi [3]; Chocat et al. [4]; Krejsa et al.
[5]; Kala [6]), from the theory of structural reliability, to evaluate how the uncertainties inherent to the
problem - such as related to crack length and to fracture toughness - affect the integrity of the structure.

Simulation techniques - as the Monte Carlo simulation (MCS) - allow the solution of complex, large
and non-linear problems in structural reliability, although the high computational cost associated can
become a serious drawback (Santos [7]). MCS is a powerful technique in estimating the probability of
failure (Pf ) of structural systems, and several intelligent sampling techniques are proposed to reduce
the number of simulations and the computational cost (Olsson et al. [8]; Bucher [9]; Naess et al. [10, 11]).

Hence, this article aims to analyze the use of Crude Monte Carlo and two modern sampling tech-
niques - Asymptotic and Enhanced Sampling - over two problems in LEFM. Besides that, the underlying
samples required in these techniques are generated using: Simple, Latin Hypercube and Antithetic Vari-
ates Sampling. All implementations were made within Python programming language.

2 Methodology

According to Barbirato [12], the LEFM is applicable to a series of practical cases to analyze cracking
in linear elastic problems. In its formulation, the stress intensity factor, K (parameter that quantifies
the magnitude of the stress field at the crack tip), is established for a several loading and geometry
configurations. Knowing the intensity factor and the mode of propagation of these cracks is of great
interest, since they can lead to the degeneration of the resistance of the structure. The relationship
between K and the stress state at the crack tip is shown in eq. (1) (Irwin [13]).
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σij =
K√

2 · π · r
· fij(θ) with KI = σ

√
πa (1)

being r the distance between the crack tip and the point considered, θ the mapping angle from the
reference point, KI the stress intensity factor for the mode I (opening) and a the size of the crack. For the
particular case of mode I, Kc = KI and σ is the stress at the remote boundary.

The Theory of Structural Reliability stands out as an important tool to study the durability and
safety of products. Within a probabilistic approach, it is possible to verify the probability of failure
(Pf ) of a structure to a certain limit state, treating the uncertainties of the problem from the statistical
description of the design variables. For more details see Melchers and Beck [14].

The MCS is one of the simulation techniques that involves the use of random numbers to generate
random events to be evaluated based on an experiment. In the context of structural reliability, a N size
random sample is generated for each variable, and the limit state equation is evaluated for the several
sets of values. For this, an indicator function I[x] is introduced, so that I[x] = 1 if x belongs to the failure
domain and I[x] = 0 if the point lies on the safe domain. In this sense, the Pf estimate (P̄f ) can be
calculated using an estimator for the expected value of I[x], defined such that:

P̄f =
1
N

N

∑
i=1

I[x] =
N f

N
(2)

where x is the vector of random variables (r.v.) of the problem and N f is the number of times that the
random sample generated corresponds to a point on the failure domain Ω f . Besides that, a parameter
called reliability index (β), geometrically defined as the distance between the origin of the reduced
normal space and the design point (point of higher probability of occurrence in Ω f ), is also defined. The
standard normal cumulative distribution function Φ allows to relate Pf and β, as can be seen in eq. (3).

β = Φ−1(1− Pf ) (3)

The MCS requires the generation of samples from r.v. vector x. The first method used in this gen-
eration is the Simple Sampling (SS). It consists of the direct application of the MCS procedure, with the
most basic type of random number generation for each r.v. of the vector x. Usual SS algorithms generate
random numbers between 0 and 1, then obtain the samples then obtain the samples by inverting the
cumulative distribution function FX(x) of the defined random variables.

The second method is using the Latin Hypercube Sampling (LHS). The domain of each r.v. is
divided in bands (Olsson et al. [8]). In the simulation each band must be sampled only once so that a
homogeneous coverage of the domain of the random variables is guaranteed. This type of sampling
results in a more sparse dispersion of the points, reducing considerably the number of points required
to cover the entire domain of the r.v.

At last, the third method is called Antithetic Variates Sampling (AVS). This method is based on
generating the simulation of two sets of random numbers, the first being U = {u1, u2, . . . , un}; the
second being a complementary set Ū = {1− u1, 1− u2, . . . , 1− un}. For structural reliability, the method
is based on generating a non-biased estimator Pf ;c, formed by the arithmetic mean of two other non-
biased estimators Pf ;a and Pf ;b, by making Pf ;a = f (ui) and Pf ;b = f (1 − ui), with i = 1, . . . , n. It
is worth mentioning that the variance of Pf ;c is smaller than the combined variance of Pf ;a and Pf ;b,
because the correlation between U and Ū is negative.

For the intelligent sampling techniques, Asymptotic Sampling (AS) and Enhanced Sampling (ES)
strategies are addressed in this paper. The AS was introduced by Bucher [9] to estimate low probabil-
ities of failure. It is based on the asymptotic behavior of the Pf , as the standard deviations of random
variables and, consequently, the Pf , tends to zero (Sichani et al. [15, 16]).

The idea of the technique is to cause an excitement in the failure function analysis, forcing the
MCS to overcome the safety domain barrier. In its formulation, a f factor is initially introduced that
is inversely proportional to the standard deviation σ of the r.v. of interest, f = 1

σ . Next, it is known
that the β becomes linearly proportional to factor f , as the dispersion of vector X and β itself increases.
Following Bucher [9], the functional relationship between β and f is approximated from:

β = A f +
B
f

(4)
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where A and B are constants computed by using a usual fitting technique (least squares, for example),
using ( f , β) support points. Therefore, as f → ∞, the asymptotic behavior is guaranteed. Finally, after
finding the values of the regression coefficients A and B, the reliability index for the original problem is
estimated by taking f = 1, so that β = A + B.

Despite the benefits proposed by AS, it should be observed the possibility of it presenting incon-
sistencies, since the modification of the standard deviation of random variables creates the possibility
of simulating values not consistent with the physical properties of the variables and often this leads to
errors in estimating the probability of failure of each support point (Santos [7]).

Proposed by Naess et al. [10, 11], the ES technique aims to reduce the computational cost of MCS
while maintaining its main advantages, from the exploration of the regularity of the probabilities of
failure in the tails of probability distributions, so that it is possible to use an approximation procedure
to estimate small probabilities of failure. The formulation of the technique takes the original limit state
function M = g(X) to create a parameterized function class, defined as M(λ) = M− µM(1− λ), where
the parameter λ satisfies 0 ≤ λ ≤ 1 and µM is the mean value of the safety margin function M. Therefore,
the relationship between the probability of failure and λ is assumed as:

Pf (λ) ≈ q · exp
[
−a (λ− b)c] with λ→ 1 (5)

where q, a, b and c are constants to be determined, with some non-linear regression method using the
pair [λ, p f (λ)]. Hence, the value of Pf of the problem is estimated by taking λ = 1, so that Pf = Pf (1).

It should be noted that the choice of the interval for f and λ depends on each problem. One should
test all possible values of these parameters and see which interval ensures convergence. The choice of
how many support points also depends on the nature of each problem.

3 Application Analysis

To apply the techniques presented herein, two benchmark LEFM problems (Fig. 1) are addressed.
The first example (a) deals with a plate under tension with central crack and the second (b) deals with
a three-point bending test of a notched beam. The limit state equations for both problems are given by
eq. (6) and eq. (7), respectively. All simulations were made on a computer Intel R©CoreTMi7-7500U CPU
2.90 GHz 64 bits with 8 GB of RAM.

Figure 1. (a) Center-cracked plate under tension; (b) notched beam under three-point bending test

Both limit state equations are written in terms of the applied external load with stress intensity
factor Kc. The relation between Kc and applied load for each case considered is defined by Broek [1].

G(a) =
Kc

√
π · a ·

[
1 + 0.256 ·

( a
W
)
− 1.152 ·

( a
W
)2

+ 12.2 ·
( a

W
)3
] − P (6)
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G(b) =
Kc · 2 ·

(
1 + 2 · a

Wv

)
·
(

1− a
Wv

)3/2
· Bv ·W3/2

v

Sv · 3 ·
(

a
Wv

)1/2
·
[

1.99− a
Wv
·
(

1− a
Wv

)
·
(

2.15− 3.93 ·
(

a
Wv

)
+ 2.7 ·

(
a

Wv

)2
)] − F (7)

For the first problem (a), W = 4, 0 m is the width of the plate; 2a ∼ N(0.1; 0.03) m the initial crack
extension; P = 50.0 kN/m the applied surface force and Kc ∼ N(50.0; 15.0) kN/m3/2 the critical stress
intensity factor. For the second problem (b), Sv = 5 m is the beam span; Wv = 1.25 m the height of the
beam; a ∼ LN(0.1; 0.02) m the initial crack extension; Bv = 1 the domain thickness; F = 115 kN the
value of the concentrated load and Kc ∼ LN(500.0; 100.0) kN/m3/2 the critical stress intensity factor.
It is noteworthy that the N(µ, σ2) and LN(µ, σ2) notations represent, respectively, r.v. that have the
Normal and Log-Normal distributions, with mean µ and variance σ2.

The results are described in terms of the reliability index, obtained by the different techniques
presented. The reference value βre f ;1 = 1.966 for the first problem can be seen in Leonel [2]. For the
second problem, the reference value βre f ;2 = 2.070 is taken from a MCS analysis, with N = 5 · 106. For
the associated computational cost, the total processing time (PT) is computed.

The values obtained are shown in Table 1. For the Simple MCS, the values of β are obtained for
N = 1 · 106 for both problems. For the ES, the parameter λ varies from 0.7 to 1, with 10 support points
for both problems. The parameter f for the AS varies from 0.6 to 0.9, with 8 support points for the first
problem, and from 0.8 to 0.9, with 12 support points for the second. For both AS and ES, N = 3000.

Table 1. Reliability analysis results for both problems

Estimation Technique β Error Time (s) β Error Time (s)

Problem 1 Problem 2

Crude 1.984 0.915% 608.424 2.068 0.096% 1290.329

Simple Sampling Asymptotic 1.991 1.271% 11.385 2.079 0.434% 18.318

Enhanced 1.985 0.966% 5.852 2.061 0.434% 79.057

Crude 1.983 0.864% 1022.292 2.068 0.096% 1133.089

Latin Hypercube Sampling Asymptotic 1.968 0.101% 27.977 2.691 30% 37.295

Enhanced 1.969 0.152% 13.180 2.061 0.434% 54.381

Crude 1.987 1.068% 1950.818 2.072 0.096% 2088.017

Antithetic Variates Sampling Asymptotic 1.998 1.627% 22.395 2.791 34.830% 43.962

Enhanced 1.977 0.559% 60.800 2.054 0.772% 59.557

From the analysis of the first problem, it can be seen that all intelligent sampling techniques per-
formed properly. In general, the ES showed the lowest percentage errors, such that none of them was
equal to or greater than 1%, and the lowest PT using both SS and LHS. Moreover, the largest error
observed refers to the AS using AVS to generate the samples, which is nevertheless a small error and
demonstrates the accuracy of the method for a small number of simulations made.

For the second problem, it is observed that the use of Crude MCS provides a good convergence
and does not present a difference for the three sampling methods, since the relative error is the same
for the three analyses. The AS technique associated to SS leads to good results, with a percentage error
of 0.434%, but generating the samples by the LHS and AVS, the accuracy is significantly reduced, with
errors of 30% and 34.83%. For the ES, all sample generation methods show good convergence, and the
result using SS was the same as the result using LHS, both providing a small percentage error around
0.434%. In terms of PT, AS performed better using SS, but since LSH and AVS had unsatisfactory results
in the combination, in general ES worked properly with lower error and time.

In summary, the AS did not provide consistent results for the analysis of the second problem, using
both LHS and AVS to generate the underlying samples. This fact can be explained by the limitation
exposed by Santos [7], since the modification of the standard deviation of random variables allows the
generation of samples not consistent with the analyzed problem.
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4 Conclusions

This paper presents a combination of new methodologies for the structural reliability analysis of
two problems of LEFM. It is observed that the generation of samples by the LHS technique had a better
convergence in most cases. Sampling by AVS had a good performance, but SS performed better than
AVS in almost all cases. Therefore, it can be said that all three techniques, combined with intelligent sam-
pling techniques, are good methods for analyzing structural reliability problems with fewer simulations
and processing time required, being the difference between ES, AS and Crude MCS very notorious.

Regarding the intelligent sampling techniques, the ES showed the best results for both problems
analyzed, with the lowest percentage errors obtained and being faster (in terms of PT) in the combina-
tion ES+SS, ES+LHS for problem 1 and ES+LHS and ES+AVS in problem 2. The AS proved to be a good
technique for the first example with the lowest PT in AS+AVS, but presented pronounced errors in the
second problem analyzed. It has to be cited that the ES has an advantage over the AS, since it uses the
same set of underlying samples in the analysis of the supporting points, because the parametrization is
done in the limit state function and not in the r.v. of the problem. This allows ES to use larger samples
in the analysis of each support point without computational penalty.

Authorship statement. The authors hereby confirm that they are the sole liable persons responsible for
the authorship of this work, and that all material that has been herein included as part of the present
paper is either the property (and authorship) of the authors, or has the permission of the owners to be
included here.
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