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Abstract. Topology optimization is the process of determining the optimal material layout within a given design 

domain, for a set of loads and boundary conditions. It is an important engineering tool that allows the design of 

lighter structures with improved strength. Among the many optimization techniques, the Bidirectional 

Evolutionary Structural Optimization (BESO) method is a robust and computational efficient algorithm that can 

be applied in designing optimized structures. In this work, the BESO method was applied to the design of 

optimized 2D truss structures. From a group of reference numerical examples (Michell Structures), the method 

capability to achieve optimal solutions was researched. These case studies were also evaluated on the 

manufacturability of the final topologies to assess if the BESO method can be used in structural designs of steel 

framework structures. 
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1  Introduction 

Truss structures are widely used in many engineering applications because they allow the construction of 

strong structures with low weight. Some constructions, such as transmission towers, would not be possible 

without trusses because they would collapse under their own weight. So, techniques of topology optimization are 

in constant development, with new solutions and methods. 

In order to produce a well design with high performance and capable of supporting high loads and stresses 

with low structural displacements, topology optimization techniques, such as the Bi-directional Evolutionary 

Structural Optimization Method (BESO), are currently in development to solve these problems. The BESO 

method, developed by Xie and Huang [1], adds and removes material from the structure based on the element 

sensitivity to achieve an optimized design. 

Structural optimization generates new structures with good performance to solve various limitations of 

mechanical projects. These structures permit to explore a structural design with high-performance and low-cost, 

so it can be technologically competitive according to Xie and Huang [1]. 

Michell Structures according to Lewiński et al. [2] were the first studies focused on stress optimization of 

trusses. They are designed with analytical solutions and provide good results that serve as benchmark references 

for topology optimization codes. Michell Structures, based on the small deformation theory of bars, present the 

best optimization results and they were used in this work as reference results. 

Recent works of truss structures optimization were developed by He et al. [3], which it was applied a 

numerical layout optimization employing an adaptive member addition. This solution proposes an efficient 

means of generating optimum trusses structures. Tomšič and Duhovnik [4] implemented the evolutionary 

structural optimization for simultaneous topology and size optimization of 2D and 3D trusses. Lüdeker and 

Krigesman [5] applied a multi-model approach in which the fail-safe requirement is an optimization constraint 

including redundancies to solve truss optimization problems. 

The objective of this article is the implementation of the BESO algorithm to optimize 2D truss structures. 
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This in-house algorithm was developed and tested using MATLAB. 

2  Topology Optimization Problem Formulation and Implementation  

This work aims to obtain a final structure with maximum stiffness limited by a desired volume. So, the 

optimization problem objective is to minimize the structure compliance: 
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where u, K and F are the displacement vector, the stiffness matrix and the load vector, respectively. Vf is the 

desired volume, Vi is the volume of a single element and 𝑥𝑖 is the design variable. The design variable is used to 

represent an active or inactive element in the structural problem and it is limited by a very small value (𝑥𝑚𝑖𝑛 =

0,001 – inactive element) or 1 (active element). 

This work represents an inactive element by implementing a material penalization scheme which is also 

widely used in the SIMP method by M. P. Bendsoe and O. Sigmund [6]. This method represents the Young’s 

modulus of an element based on its density, according to the following equation: 
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where 𝐸𝑜 is the Young’s modulus of the solid material. 

The addition and removal of elements is based on the element sensitivity, where elements with the smallest 

sensitivity values are removed from the structure, while the highest sensitivities are added. The sensitivity 

number (𝛼𝑖
𝑒) of the elements can be defined as 
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where 𝑢𝑖 is the displacement vector of the ith element, 𝐾𝑖 is the stiffness matrix of the ith element and 𝑉𝑖 is the 

volume of the ith element. 

The optimization process ends when the desired volume is reached and the objective function stabilizes. 

This last criterion is evaluated by the following expression: 
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where the structure converges if error   . N is an integer number (N=5 for this work), j is the current 

iteration number, 𝜏 is an allowable convergence tolerance and C is the compliance. Fig. 1 shows the complete 

BESO algorithm implemented for this work. 
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Figure 1. Topology optimization algorithm. 

2.1 Initial structure problem 

The initial structure for all the examples implemented in this work is a full structural domain comprised of 

a group of trusses organized in a square fashion with a middle node (Fig. 2).  So, the problem can be defined by 

the number of nx groups in the X axis and ny groups in the Y axis 

 

Figure 2. Example of an initial structure. In this problem nx=3 and ny=2. 

2.2 Michell problem formulation 

The Michell problem used to validate the implementation is the Cantilever beam (Fig. 3a) and the half-

plane (Fig. 3b). The problem dimensions are presented by Fig.3 and the element properties are the following: 

cross section area of 0.000025m, Young’s modulus of 200 Gpa and point load of 100 N for all cases. 

 

Figure 3. Evaluated optimization problems: a) Cantilever beam problem; b) Half-plane problem. 

2.3 Results 

The cantilever beam results are presented in Fig. 4 for different volumes. The final topology can be 

compared with Michell’s Cantilever design with shows a similar structural topology. It was adopted for this 

simulation an evolution rate (ER) of 1%, a maximum element addition rate (AR) of 5%, a convergence tolerance 

(τ) of 0.01% and the desired objective volume is 50%. Tab. 1 shows the values of volume and compliance for 

some iterations. 
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Table 1. Cantilever: Compliance and Volume for some iteration steps of the optimization.  

Iteration Figure 4 Volume (%) Compliance (N.m) 

1  99 3.5580e-04 

10 a 90 3.6008e-04 

30 b 70 4.3602e-04 

50 c 50 5.7014e-04 

74 d 50 5.8218e-04 

 

 

Figure 4. Cantilever topology optimization evolution 

Fig. 5 shows the cantilever evolution histories of the volume and the mean compliance. The final topology 

achieved is also presented.  

  

Figure 5. Cantilever: Optimized Structure with axial stresses and evolution of compliance and volume. 

The half-plane results are presented in Fig. 6 with similar results to Michell’s half-plane design. It was 

adopted for this simulation an evolution rate (ER) of 1%, a maximum element addition rate (AR) of 5%, a 

convergence tolerance (τ) of 0.01% and the desired objective volume is 30%. Tab. 2 shows the values of volume 

and compliance for some iterations. 

 

Table 2. Half-plane: Compliance and Volume for some iteration steps of the optimization. 

Iteration Figure 6 Volume (%) Compliance (N.m) 

1  99 9.6939e-04 

10 a 90 9.8109e-04 

30 b 70 0.0011 

60 c 40 0.0018 

84 d 30 0.0028 
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Figure 6. Half-plane topology optimization evolution 

Fig. 7 shows the half-plane evolution histories of the volume and the mean compliance. The final topology 

achieved is also presented. 

 

Figure 7. Half-plane: Optimized Structure with axial stresses and evolution of compliance and volume. 

3  Conclusions 

The objective of this work is to apply the BESO method to solve truss optimization problems. The 

benchmark problems were compared with Michell Structures design and they presented similar topologies.  

Some problems encountered during the development of this work war related to symmetry results, which were 

probably caused by the sensitivity filter scheme. Although these preliminary results are promising, further 

research will be aimed to develop and test new methods for the sensitivity filter scheme and also to modify the 

implementation from truss elements to frame elements.  
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