

Automação da análise de tensão em vigas através de planilhas no software Excel ®

André Luigui Bezerra Santos¹, Janielly Kaline de Oliveira Ferreira da Fé², Marcilene Vieira da Nóbrega³, Sara de Oliveira Marques Luna⁴

¹Estudante de Graduação, Universidade Federal Rural do Semi-Árido – UFERSA – Campus Angicos R. Gamaliel Martins Bezerra, 59515-000, Rio Grande do Norte/Angicos, Brasil andreluiguibs@gmail.com

²Departamento de Exatas, Tecnologias e Ciências Humanas, Universidade Federal Rural do Semi-Árido – UFERSA – Campus Angicos

R. Gamaliel Martins Bezerra, 59515-000, Rio Grande do Norte/Angicos, Brasil janielly.ferreira@ufersa.edu.br

³ Departamento de Engenharias, Universidade Federal Rural do Semi-Árido – UFERSA – Campus Angicos R. Gamaliel Martins Bezerra, 59515-000, Rio Grande do Norte/Angicos, Brasil marcilenenobrega@ufersa.edu.br

⁴Estudante de Pós-Graduação, Universidade Federal do Rio Grande do Norte – UFRN – Campus Natal Avenida Senador Salgado Filho, 59078-970, Rio Grande do Norte/Natal, Brasil marquessara95@hotmail.com

Resumo. Os assuntos relativos às tensões e suas transformações em elementos estruturais são amplamente discutidos pelos autores da área da Mecânica dos Sólidos. Estas tensões são geradas devido aos esforços internos, os quais predominam o momento fletor e o esforço cortante em elementos submetidos a carregamentos transversais e mais especificamente as vigas. É importante ressaltar que devido as tensões atuarem nas seções transversais desses elementos estruturais torna-se necessária a análise das propriedades geométricas dessas seções e a utilização destes valores para os cálculos das tensões. Desse modo, em função da grande quantidade de etapas necessárias para a obtenção das tensões em vigas, esse trabalho teve como objetivo principal a elaboração de modelos analíticos no software Excel® capazes de obter de forma automatizada as propriedades geométricas de seções transversais, os esforços internos, as tensões cisalhantes e normais e as suas transformações. Para isto foi realizado um estudo analítico das equações disponíveis na literatura para a determinação destas tensões, aliado com a adequação dessas equações de acordo com as seções transversais analisadas, que foram as seções transversais em I, T (normal e invertido) e retangular, considerando vigas submetidas às condições de apoios engastada ou biapoiada, com carregamento pontual ou distribuído. Ao final do trabalho percebeu-se que a planilha é capaz de auxiliar o estudo das tensões desenvolvidas em vigas e transformação de tensões.

Paalavras-chave: Tensões. Propriedade Geométricas. Automação. Microsoft Excel ®.

1 Introdução

De acordo com a NBR 6118 (2014, p. 74) vigas são "elementos lineares em que a flexão é preponderante". Devido a esses membros trabalharem flexionados os tipos de esforços internos atuantes serão os esforços cortantes e os momentos fletores. Provocando nesses elementos, segundo Botelho (2015), tensões normais de compressão e tração, e tensões tangenciais de cisalhamento (deslizamento).

O processo de determinação das tensões atuantes envolve cálculos que demandam certa quantidade de tempo e esforço mental. Hibbeler (2019) define os seguintes passos para a determinação das tensões e das suas transformações: cálculo dos momentos e cisalhamentos internos; determinação das propriedades geométricas da seção transversal e por fim, a aplicação das equações para as tensões.

Notando as inúmeras etapas do processo de análise e considerando situações em que a peça estudada não resiste as tensões impostas. Logo, necessitando da alteração da seção transversal e de novos cálculos. Percebeu-se a necessidade de programar as equações das análises de tensões, para o aumento da eficácia e da rapidez das análises.

Sendo assim, o objetivo principal do trabalho foi a elaboração de um conjunto de planilhas capaz de analisar, de forma automatizada, as tensões normais e de cisalhamento nas seções transversais de vigas submetidas a carregamento transversal. Como resultado foram criadas planilhas capazes de calcular os esforços internos, as propriedades geométricas e as tensões e suas transformações.

2Análise das tensões

2.1 Propriedades Geométricas

O estudo das tensões na Mecânica dos Sólidos consiste em uma série de deduções (equações das tensões normais, das tensões cisalhantes, transformações de tensões, tensões máximas e entre outros). Para Hasse (2015), devido as tensões atuarem ao longo das seções transversais torna-se necessário, antes de qualquer análise, primeiro conhecer propriedades importantes para caracterizar bem estas seções. Tais como, momento estático de área, momento de inércia, centro de gravidade, raio de giração e o módulo resistente (MELCONIAN, 2009).

2.2 Esforços, tensões e transformações de tensões

As vigas são membros estruturais nos quais a flexão é preponderante. Dessa forma, surgem internamente esforços que provocam dos tipos de tensões, a tensão normal (provocada pelo momento fletor) e a tensão cisalhante (provocada pelo esforço cortante) (BOTELHO, 2015). Para Hibbeler (2013) antes de encontrar essas tensões, o equilíbrio do membro estrutural deve ser definido, ou seja, devem ser estudados os esforços cisalhantes e fletores de cada situação de carregamento.

É importante ressaltar que o processo de cálculo se utiliza do princípio de que o material do membro estrutural é isotrópico, isto é, possui a capacidade de reagir igualmente, independentemente das direções de aplicação dos esforços (BEER E JOHNSTON, 2015). Contudo, este tipo de propriedade, segundo Hibbeler (2019), pode ser atribuída a materiais nos quais as suas fibras não possuem direção aparente e, dessa maneira, em materiais nos quais as fibras possuem direções aparentes a isotropia deve ser desconsiderada, tornando-se necessário o estudo das tensões em planos transformados.

Sendo assim, como forma de garantir uma melhor análise dos materiais anisotrópicos as transformações de tensões são estudadas. A análise envolve elementos infinitesimais denominados de estado de tensão, os quais são obtidos através das equações das tensões normais e cisalhantes e transformados através de equações da transformação de tensão. Uma das formas de realizar o processo de transformação de tensões é através do Círculo de Mohr, fazendo uma representação gráfica do estado de tensão atuante.

3 Metodologia

3.1 Definição das seções transversais e vigas analisadas

Foram selecionados quatro tipos de seções transversais, sendo elas as seções em I, T (normal e invertido) e retangular. Quanto as restrições e as cargas considerou-se vigas submetidas às condições de apoio engastada ou biapoiada, com carregamento pontual ou distribuído.

3.2 Determinação analítica das propriedades geométricas, esforços internos tensões e transformação de tensão

O ponto inicial para a elaboração do trabalho foi a dedução das propriedades geométricas (momento estático de área, momento de inércia, centro de gravidade, raio de giração e o módulo resistente) das seções transversais. Para isto, todas as dimensões das seções foram representadas por letras e um estudo analítico das propriedades geométricas foi feito seguindo as equações utilizadas por Melconian (2009).

Nos esforços internos as vigas foram sujeitas a carregamentos representados por variáveis e fixou-se seu comprimento como sendo L. Com as vigas genéricas, as equações do equilíbrio foram aplicadas e as equações do esforço cortante e momento fletor foram encontradas.

Seguindo para o processo de análise das tensões, um elemento infinitesimal foi destacado em cada seção transversal. Com isso, encontrou-se analiticamente a equação que rege o momento estático de área da seção conforme o ponto analisado se aproxima do centro de gravidade da peça (Fig. 1).

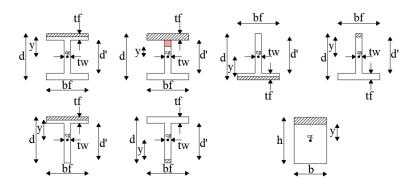


Figura 1. Seções transversais representadas por letras e com elementos infinitesimais destacados

De posse do momento estático de área para cada seção, a formulação da tensão cisalhante descrita por Hibbeler (2019) foi utilizada para o encontro das tensões. Destaca-se que para a tensão normal o mesmo autor foi utilizado para o encontro das equações.

Ressalva-se um conceito de tensão cisalhante que foi o determinante para o encontro do sinal desta tensão no Círculo de Mohr. Hibbeler (2019) não descreve de forma precisa como encontrar o sinal das tensões cisalhantes para o círculo. Contudo, notou-se que um elemento com um esforço cortante positivo, uma tensão cisalhante negativa (Fig. 2) era representada pelo autor. A partir disso, concluiu-se que para a montagem do estado plano de tensões ao invés da tensão cisalhante ser inserida com o sinal positivo, devido ao cortante positivo, deve ser na verdade inserida com o oposto do sinal calculado, negativo.

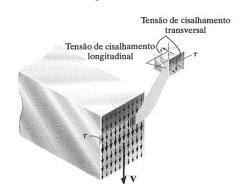


Figura 2. – Tensão cisalhante em seção transversal de viga

3.3 Processo de elaboração da Planilha

O primeiro passo para formular a planilha foi a criação da aba para inserção dos dados. Nessa aba células para as inserções das seguintes características, estão dispostas: dimensões das vigas, dimensões das seções transversais, tipo de carregamento, comprimento da viga e ponto de análise.

Para o cálculo das propriedades geométricas e esforços internos, as equações obtidas analiticamente foram inseridas no software e termos condicionais *se*, *ou* e *e* foram utilizados para programar a planilha de acordo com o tipo de viga e carregamento. Ressalta-se que na aba das propriedades geométricas funções gráficas do Excel ® foram utilizadas para o desenho automático de cada tipo de seção transversal e de acordo com a sua dimensão inserida.

Seguindo para as tensões, as equações estudadas através de Hibbeler (2019) foram inseridas. É importante destacar que devido as seções do tipo I e T (normal e invertido) possuírem o momento estático de área diferentes nas mesas e nas almas, termos condicionais foram novamente utilizados para que a planilha demonstre a correta tensão atuante.

Quanto a formação do Círculo de Mohr no Microsoft Excel®, as equações que regem as tensões em x e y variam em ângulos de 0 a 360 graus. Sendo assim, ao processar as equações das transformações em ângulos que variam de 0 até 180 graus, já que os ângulos de transformação são multiplicados por dois, os pontos conectados formarão um círculo.

Em suma, a planilha funciona como mostrado no esquema da Fig. 3.

Figura 3. Esquema representando o funcionamento completo da planilha

4 Resultados Obtidos

O trabalho fez uso de estudos analíticos para verificação da eficácia das planilhas. As Figuras 4, 5, 6 e 7 mostram os problemas estudados. Destaca-se que os esforços internos foram analisados no ponto A de cada viga e as tensões foram estudadas em pontos com distância y partindo do centro de gravidade.

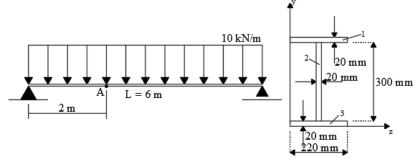


Figura 4. Viga biapoida, submetida a carregamento distribuído e com seção transversal em I

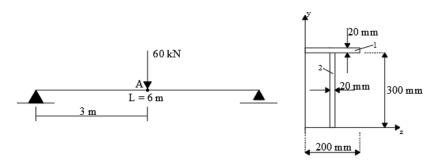


Figura 5. Viga biapoida, submetida a carregamento pontual e com seção transversal em I

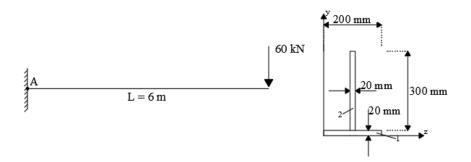


Figura 6. Viga engastada, submetida a carregamento pontual e com seção transversal em T invertido

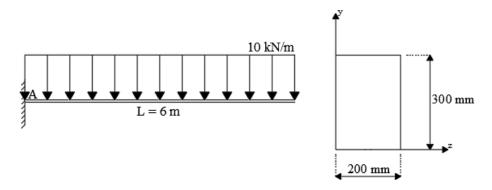


Figura 7. Viga engastada, submetida a carregamento distribuído e com seção transversal retangular

Nas Tabelas 4, 5, 6 e 7 são apresentados os resultados obtidos para as análises das tensões para os problemas analisados. A tabela 4 diz respeito a figura 4, a tabela 5 diz respeito a figura 5, a tabela 6 diz respeito a figura 6 e tabela 7, a figura 7.

Esforços Internos		Esforços Internos			
-	Excel	Analítico		Excel	Analítico
Q (kN)	10	10	Q (kN)	10	30
M (kN.m)	40	40	M (kN.m)	40	90
Propriedades Geométricas		Propriedades Geométricas			
Centro de Gravidade Zcg (mm)	110	110	Centro de Gravidade Zcg (mm)	100	100
Centro de Gravidade Ycg (mm)	170	170	Centro de Gravidade Ycg (mm)	214	214
Momento de Inércia Iz (mm^4)	270,57 . E6	270,57 . E6	Momento de Inércia Iz (mm^4)	106,57 . E6	106,57 . E6
Momento de Inércia Iy (mm^4)	35,69 . E6	35,69 . E6	Momento de Inércia Iy (mm^4)	13,53 . E6	13,53 . E6
Módulo Resistente Wesq,dir (mm^3)	324,48 . E3	324,48 . E3	Módulo Resistente Wesq,dir (mm^3)	135,33 . E3	135,33 . E3
Módulo Resistente Wsup,inf (mm^3)	1,59 . E6	1,59 . E6	Módulo Resistente Wsup. (mm^3)	1,01 . E6	1,01 . E6
Raio de Giração iz (mm)	135,21	135,21	Módulo Resistente Winf. (mm^3)	498,01 . E3	498,01 . E3
Raio de Giração iy (mm)	49,11	49,11	Raio de Giração iz (mm)	103,23	103,23
Tensões	12,111	.,,,,,,,	Raio de Giração iy (mm)	36,79	36,79
Tensão Normal		Tensões			
y = 170 mm	-25,13 MPa	-25,13 MPa	Tensão Norr	nal	
y = 170 mm y = -170 mm	25,13 MPa	25,13 MPa	y = 106 mm	-89,52 MPa	-89,52 MPa
y = 170 mm Tensão Cisalha		23,13 WH a	y = -214 mm	180,72 MPa	180,72 MPa
Mesa		Tensão Cisalhante			
y = 170 mm	0 Pa	0 Pa	Mesa		
y = 170 mm $y = 160 mm$	60,98 kPa	60,98 kPa	y = 106 mm	0 Pa	0 Pa
•	*		y = 96 mm	284,31 kPa	284,31 kPa
y = 150 mm	118,27 kPa	118,27 kPa	y = 86 mm	540,47 kPa	540,47 kPa
Alma		Alma			
y = 150 mm	1,30 MPa	1,30 MPa	y = 86 mm	5,40 MPa	5,40 MPa
y = 75 mm	1,61 MPa	1,61 MPa	y = 0 mm	6,45 MPa	6,45 MPa
y = 0 mm	1,72 MPa	1,72 MPa	y = -214 mm	0 Pa	0 Pa
Trans formação de Tens	• •		Transformação de Tens	ão (y=106mm)	
σ_1	1,72 MPa	1,72 MPa	σ_1	-89,52 MPa	-89,52 MPa
σ_2	-1,72 MPa	-1,72 MPa	σ_2	0 Pa	0 Pa
$\sigma_{ m m\'ed}$	0 Pa	0 Pa	$\sigma_{ m m\'ed}$	-44,76 MPa	-44,76 MPa
$ au_{ ext{max}}$	1,72 MPa	1,72 MPa	$ au_{ ext{m\'ax}}$	44,76 MPa	44,76 MPa
$\theta_{ m p}$	45 °	45 °	$\theta_{\mathbf{p}}$	0 °	0 °
$\theta_{\mathbf{c}}$	0°	0°	$\theta_{\mathbf{c}}$	45 °	45 °

Tabela 1. Planilha para vigas em I

Tabela 2. Planilha para vigas em T

		108	Esforços Intern			
	Analítico	Excel				
	60	60	Q (kN)			
	-360	-360	M (kN.m)			
		nétricas	Propriedades Geor			
Centro de	100	100	Centro de Gravidade Zcg (mm)			
Centro de	106	106	Centro de Gravidade Ycg (mm)			
Momento	106,57 . E6	106,57 . E6	Momento de Inércia Iz (mm^4)			
Momento	13,53 . E6	13,53 . E6	Momento de Inércia Iy (mm^4)			
Módulo Res	135,33 . E3	135,33 . E3	Módulo Resistente Wesq,dir (mm^3)			
Módulo Res	498,01 . E3	498,01 . E3	Módulo Resistente Wsup. (mm^3)			
Raio d	1,01 . E6	1,01 . E6	Módulo Resistente Winf. (mm^3)			
Raio d	103,23	103,23	Raio de Giração iz (mm)			
	36,79	36,79	Raio de Giração iy (mm)			
		Tensões				
		nal	Tensão Norm			
	722,88 MPa	722,88 MPa	y = 214 mm			
	-290,50 MPa	-290,50 MPa	y = -86 mm			
	-358,06 MPa	-358,06 MPa	y = -106 mm			
-		inte	Tensão Cisalha			
			Mesa			
	1,08 kPa	1,08 kPa	y = -86 mm			
	568,62 kPa	568,62 kPa	y = -96 mm			
	0 Pa	0 Pa	y = -106 mm			
			Alma			
	0 MPa	0 MPa	y = 214 mm			
Tabe	12,89 MPa	12,89 MPa	y = 0 mm			
	10,81 MPa	10,81 MPa	y = -86 mm			
		ăo (y=-86mm)	Transformação de Tensa			
	-290,90 MPa	-290,90 MPa	σ_1			
	0,40 MPa	0,40 MPa	σ_2			
	-145,25 MPa	-145,25 MPa	$\sigma_{ m m\acute{e}d}$			
	145,65 MPa	-145,65 MPa	$ au_{ ext{máx}}$			
	2,13 °	2,13 °	$\theta_{ m p}$			
	-42,87 °	-42,87 °	$\theta_{ m c}$			

Esforços Intern	os					
	Excel	Analítico				
Q (kN)	60	60				
M (kN.m)	-180	-180				
Propriedades Geom	nétricas					
Centro de Gravidade Zcg (mm)	100	100				
Centro de Gravidade Ycg (mm)	150	150				
Momento de Inércia Iz (mm^4)	450 . E6	450 . E6				
Momento de Inércia Iy (mm^4)	200 . E6	200 . E6				
Módulo Resistente Wesq,dir (mm^3)	2.E6	2.E6				
Módulo Resistente Wsup,inf (mm^3)	3.E3	3.E3				
Raio de Giração iz (mm)	86,60	86,60				
Raio de Giração iy (mm)	57,73	57,73				
Tensões						
Tensão Norma	al					
y = 150 mm	60 MPa	60 MPa				
y = -150 mm	-60 MPa	-60 MPa				
Tensão Cisalha	nte					
y = 0 mm	1,5 MPa	1,5 MPa				
Transformação de Tensão (y=-150mm)						
σ_1	-60 MPa	-60 MPa				
σ_2	0 Pa	0 Pa				
$\sigma_{ m m\acute{e}d}$	-30 MPa	-30 MPa				
$ au_{ ext{m\'ax}}$	-30 MPa	-30 MPa				
$\theta_{ m p}$	0°	0 °				
$ heta_{ m c}$	45 °	45 °				

Tabela 4. Planilha para vigas retangulares

Tabela 3. Planilha para vigas em T invertido

Ao comparar os resultados percebeu-se que as planilhas elaboradas apresentaram a capacidade de calcular — de forma eficaz — as propriedades geométricas, tensões normais e cisalhantes, demonstrar as tensões transformadas e plotar corretamente o círculo de Mohr. Para melhor entendimento do processo de cálculo e utilização da planilha, é possível acessar o memorial de cálculo e o conjunto de quatro planilhas a partir do link disponível no Anexo A.

5 Conclusões

Este artigo teve como objetivo principal a elaboração de uma planilha no software Excel para a determinação de tensões normais, tensões de cisalhamento e tensões transformadas. Diante de toda a discussão pode-se chegar as seguintes conclusões:

- O Microsoft Excel ® possui alta viabilidade para a programação de cálculos de engenharia;

- Notou-se também a eficácia do código programado na planilha do Microsoft Excel. Sendo ele capaz representar graficamente as seções transversais, mostrar o ponto analisado de maneira interativa, gerar os esforços internos atuantes e por fim as tensões;
- É importante destacar que devido a gama de carregamentos e seções existentes, torna-se necessário a continuação deste trabalho a fim de se melhorar cada vez mais o dimensionamento de vigas. A partir da continuação será possível realizar mais estudos sobre as diversas seções utilizadas no mercado e as diversas estruturas e carregamentos;
- Espera-se também a realização de um estudo sobre o quanto a planilha auxiliará no ensino da Resistência dos Materiais e a elaboração uma única planilha capaz de analisar vários tipos de tensões. Além disso, espera-se também a realização de um estudo de como as alterações das dimensões das seções transversais influenciam nas tensões atuantes:
 - Espera-se ainda que com a continuação a estética da planilha seja melhorada;
- Por fim, espera-se que a planilha contribua no aprendizado dos alunos de Resistencia dos Materiais, os transformando em engenheiros capazes de resolver além de problemas pré-estabelecidos. Pois, com a utilização da planilha diversas análises poderão serem feitas sem a repetição de novos cálculos.

Referências

- [1] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 6118: Projeto de estruturas de concreto Procedimento. Rio de Janeiro, 2004.
- [2] BOTELHO, Manoel Henrique Campos Resistência dos Materiais para entender e gostar, 3ª edição, Editora Blucher, São Paulo-SP, 2015.
- [3] HASSE, Daniel. Características Geométricas de Figuras Planas. 2015. Disponível em:
- https://engucm.files.wordpress.com/2015/03/geometria-de-massas.pdf. Acesso em: 27 mar. 2020.
- [4] MELCONIAN, Sarkis. Mecânica Técnica e Resistência dos Materiais. 17ª edição. São Paulo: Editora Érica, 2009.
- [5] HIBBELER, R.C. Análise das Estruturas. 8ª Ed., PEARSON, 2013.
- [6] HIBBELER, R.C. Resistência dos Materiais. 10^a Ed., PEARSON, 2019.
- [7] BEZERRA, Paulo Henrique Araújo; GOUVEIA, Bruno Guida. 2013. Utilização do software Excel® e de outras ferramentas computacionais no ensino de resistência dos materiais. XXXIV Iberian Latin-American Congress on Computational Methods in Engineering (CILAMCE).

Anexo A – link para as planilhas e as análises analíticas

[1] Planilhas e resoluções de exercícios. 2020. https://drive.google.com/file/d/1y0-cY46VUU8AD5XLAJyFNsBGH56utP2Q/view?usp=sharing .