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Abstract. The numerical modeling of multiphase and multicomponent fluid flow in petroleum reservoirs is ex-
tremely complex and computationally demanding. Frequently, simpler black-oil models are not suitable for cases
in which the reservoir fluid is volatile and composed by several pseudo-components with distinct characteristics.
For those cases, the use of a compositional simulation based in Equations of State (EOS) is of utmost importance.
In this work, we present an Implicit Pressure Explicit Composition (IMPEC) formulation using cartesian grids for
the compositional reservoir simulation based on an EOS approach. Diffusive terms in flux and transport equations
are discretized by the Two-Point Flux Approximation (TPFA) finite volume method. Besides, to improve front res-
olution and accuracy, we discretize the advective terms of the transport equations by the second-order Monotonic
Upstream-centered Scheme for Conservation Laws (MUSCL) method. So far, the implemented model considers
isothermal flow, up to three-phase flow and that there is no mass transfer between water and hydrocarbon phases.
Physical dispersion is neglected. Our IMPEC formulation is evaluated by solving a benchmark problem found in
literature. The accuracy of our approach is evaluated comparing our results with those obtained by a commercial
reservoir simulator (CMG-GEM).

Keywords: Petroleum Reservoirs, Compositional Formulation, Implicit Pressure Explicit Composition (IMPEC)
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1 Introduction

The numerical modeling of the multiphase and multicomponent fluid flow in heterogeneous petroleum reser-
voirs is extremely complex and computationally demanding. The Black-oil model, a simpler compositional model
vastly used in the petroleum reservoir simulation industry, assumes that the reservoir fluids consists of one explicit
water component and phase and only two hydrocarbon pseudo-components, distributed in one oil phase and one
gas phase. For that reason, Black-oil models are not suitable for cases where the reservoir fluid is composed by
several pseudo-components with distinct characteristics, the fluid composition varies along the reservoir or in pro-
cesses where Enhanced Oil Recovery (EOR) techniques are applied, such as polymer injection, thermal recovery,
Water Alternate Gas (WAG), etc. The importance of the compositional effects present in those cases, raise the need
for more complex compositional models, such as EOS based compositional models, that are capable of properly
describe the complex phase behavior.

The numerical simulation of the compositional effects involves the solution of a system of non-linear equa-
tions that comprises the mass conservation, the Darcy law for each phase and fugacity constraints. Several ap-
proaches to solve this system are presented in literature, varying from the choice of the primary variables to the
coupling level of the system of equations. In this work, we have used the classical IMPEC approach, proposed
by Ács et. al.[1], in which the pressure field is computed implicitly and the compositions are computed explicitly.
In this formulation the stability tests and flash procedures are made separately, after computing the overall system
composition. The pressure equation is discretized by the finite volume method using a Two-Point Flux Approxima-
tion (TPFA) scheme. Besides, in order two improve front resolution and accuracy, the second order MUSCL-type
approach of Van Leer (Moshiri and Manzari [2]) is used to solve the composition equations, where monotonicity
is guaranteed by the use of the Van Leer’s slope limiter.
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2 Mathematical Model

In this paper, we have used a model that arises from the proper application of the following relations: ma-
terial balance equations, correlations to describe the fluid properties and thermodynamic equilibrium constraints
(Fernandes [3]). Those form a system of (np − 1)nc + np + 1 equations and unknowns, where np is the number
of phases, including water, and nc is the number of hydrocarbon components present in the system (Schmall [4]).
In this work, we make the following simplifying assumptions: the flow is isothermal, there is no mass transfer be-
tween the water phase and the hydrocarbon phases, physical dispersion and capillary pressure effects are neglected.
In this context, the final mathematical model is shown in eq. (1) to eq. (4) given bellow:
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where Vb is the bulk volume, Nk is the number of moles of component k, Sj , ξj , µj , krj and ρj are, respectively,
the saturation, the molar density, the viscosity, the relative permeability and the mass density of the phase j, xkj
and fkj are, respectively, the molar fraction and the fugacity of the component k in the phase j, qk is the molar rate
of the component through the well, K

∼
is the permeability tensor, P is the pressure of the reference phase, taken

here as the oil phase, D is the depth and g is the gravity acceleration.
Molar, mass densities and fugacities are calculated in this work by the Peng-Robinson’s model (Peng and

Robinson [5]). For the phase appearance and disappearance treatment, phase stability tests are performed using
the stationary point location method (Michelsen [6]), followed by flash calculations, using Whitson-Michelsen’s
[7] adaptation of the Rachford-Rice correlations to include negative flash calculations.

3 IMPEC Formulation

Several numerical formulations were proposed in literature for the solution of the fluid flow model. In this
work, we have chosen the IMPEC formulation based on Ács et. al. [1] due to its simplicity and easy implementation
when compared to others formulations. In the approach proposed by Ács et. al. [1], the pressure equation is
obtained from the equality between the pore volume, Vp and the total volume occupied by the reservoir fluid, Vt:

Vp(P ) = Vt(P,N1, ...Nnc+1). (5)

After some algebraic manipulation of eq. (5) and eq. (1), the pressure equation has the following form
(Fernandes [3]):(
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where Cf is the rock compressibility and φ0 is the rock porosity taken at a reference pressure. The total volume
partial derivative terms are computed using the Peng-Robinson EOS [5]. The pressure equation is solved implicitly.
From the initial water saturation, reservoir fluid composition and pressure distribution, the IMPEC formulation,
consists in: 1. Compute pressure implicitly by eq. (6); 2. Compute fluxes using Darcy’s Law; 3. Compute
composition explicitly by eq. (1); 4. Update global composition; 5. Perform the phase stability test and the flash
calculations; 6. If the simulation time does not reach the final time, advance in time and go to step 1. Otherwise,
stop the simulation and exit. In the following section we present the numerical finite volume formulation used
to discretize the partial differential equations of the IMPEC formulation. For the approximation of the diffusion
terms present in these equations, we have used the classical linear second order Two Point Flux Approximation
(TPFA) method. For the transport terms, we have used a second order accurate MUSCL-type finite volume method.
Finally, we have applied the first order Euler method for the time discretization and compared our results against
the solution obtained by the commercial reservoir simulator GEM from CMG [8].

CILAMCE 2020
Proceedings of the XLI Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.
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3.1 Approximate Pressure Equation: The TPFA method

Considering an arbitrary control volume of a cartesian uniform grid and 1-D fluid flow (x direction), the
approximated pressure equation can be obtained by applying the TPFA method for that grid block, as follows:
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where λrj = krj/µj , the n superscript indicates the time step, the L and R subscripts stands for the left and
right volumes of the analyzed control volume, M . Besides, the l and r subscripts indicates the face shared by
the volumes L and M and the volumes M and R, respectively, and A is the face area. The (V n

t,M − V n
p,M ) term

in the right side of the pressure equation is a correction term for the truncation errors associated to the linear
approximations made to obtain eq. (6). For more details regarding how this term arises see Ács et. al. [1]. The
fluid properties at the control surfaces of the grid blocks were approximated by weighted arithmetic average of the
neighboring cells values.

3.2 Approximate Component Transport Equation: The MUSCL method

For the discretization of the advective terms present in the composition equation, we have used the second
order Monotonic Upstream-centered Scheme for Conservation Laws (MUSCL) method. This approach consists
in reconstructing the desired variable at each control volume (Galidez-Ramirez et. al. [9]). As a second-order
polynomial reconstruction is used, a linear reconstruction is determined from the mean values of the two closest
neighboring volumes. After the linear reconstruction at each volume, the property is extrapolated at the left and
right sides of each grid block interface. In order to reinforce monotonicity, a slope limiter must be used in this
process. The procedure to obtain the number of moles using a second order approximation at the interfaces is
shown in eq. (8) and eq. (9) bellow (Moshiri and Manzari [2]),

Nk
−
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+
i−1/2)(Nki −Nki−1), (8)
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+
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+
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where the subscript i + 1/2 represents that the property is calculated at a interface, while i plus an integer value,
represents that the property is taken at a grid volume. Also, the plus(+) and minus(-) superscripts indicates the right
and left extrapolated states of the interface, respectively, r is the ratio of gradients and Lim is the slope limiter.
Here, we have used the Van Leer slope limiter, given by:

LimV anLeer =
r + |r|
r + 1

. (10)

After the reconstruction, we compute the component flux at the interface by using the Local Lax-Friedrichs
(LLF) scheme (Moshiri and Manzari [2]), which is given by,
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where, αLLF is the maximum eigenvalue of the hyperbolic system, representing the maximum wave velocity. This
parameter can be calculated as follows:

|αLLF | = max(|α−max|, |α+
max|, |αG−

max|, |αG+
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max|), (12)
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Nk−+Nk+

2 and αG− and αG+ are the
eigenvalues corresponding to the Gauss points at Nkm +
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3

and Nkm +
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3
, respectively.
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4 Results

In order to evaluate our formulation and verify our implementation, we present a problem involving the
multicomponent, three phase and 1-D flow of water, oil and gas in a petroleum reservoir that was adapted from
a 3-D problem presented in Schmall [4]. In this example, we have a water injection well at the left extreme side
of the reservoir and a production well at the right extreme side. The reservoir has the dimensions of 2731.2m ×
10.67m× 10m and the flow is along the x-direction. The porosity is φ0 = 0.35, the permeability is Kx = 10mD,
the initial water saturation is S0

w = 0.3, which is equal to the water critical saturation, temperature is T = 344.25K
and the initial pressure is P 0 = 10.34MPa throughout the reservoir. Oil residual saturation is Sor = 0.1, water
injection rate is qw = 35.75m3/day and the Bottom Hole Pressure (BHP) at the producer well is PBHP,prod =
8.96MPa. The initial fluid composition at the reservoir is: zC1 = 0.5, zC3 = 0.03, zC6 = 0.07, zC10 = 0.2,
zC15 = 0.15, zC20 = 0.05, where z is the global composition. The results were obtained after 200 days of
simulation. We used a CFL of 0.5. We have compared our solutions with the ones obtained by the GEM simulator
from Computer Modeling Group [8] with a mesh of 1024 control volumes (CV). In order to evaluate the accuracy
of our formulation we have used the L2 norm of the error. Table 1 shows the error norm and convergence rates,
where we can notice the best accuracy of the MUSCL method when compared to the FOUM (First Order Upwind
Method). The error behaviour for the L2 norm is shown in Fig. 1, where we can see that the MUSCL method has
a slightly uneven behaviour. This can be explained by the slope limiting process required in high order methods to
preserve monotonicity at the shock front. This process, however, can contaminate the solution in smooth regions
behind of the shock, deteriorating the optimal order of accuracy at the discontinuity (Galindez-Ramirez et. al. [9]).

Table 1. Error norm and convergence rates

FOUM MUSCL

Cells L2error L2rate L2error L2rate

8 0.07439 - 0.07974 -

16 0.05772 0.3659 0.04599 0.7939

32 0.04165 0.4708 0.03146 0.5481

64 0.02688 0.6316 0.01559 1.0126

128 0.02132 0.3345 0.01032 0.5949

256 0.01913 0.1562 0.00631 0.7103
Figure 1. Error norm variation with number of cells

The more accurate solution of the MUSCL method can also be seen in the Fig 2.

(a) 64 control volumes (b) 128 control volumes

Figure 2. Water Saturation solution obtained for the MUSCL method and FOUM with a) 64 CV and b) 128 CV
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In Fig. 3, we present the oil saturation and the gas saturation profiles using our higher order method for a
mesh with 256 CV against the reference solution obtained by the CMG-GEM software for a mesh with 1024 CV.

(a) Oil saturation profile (b) Gas saturation profile

Figure 3. Results of three-phase six component problem after 200 days of simulation using a 256 CV mesh

5 Conclusions

In this work, we present an IMPEC formulation for the modeling of compositional flows in petroleum reser-
voirs. The transport problem is solved through the higher order MUSCL method using the LLF approach. To
evaluate the accuracy of our formulation, we have compared our results with the FOUM method and the results
obtained by CMG-GEM software. Our results are very promising and in the future, we will use a more accurate
Riemann solver and the IMPSAT (Implicit Pressure and Saturation) formulation to handle more complex problems.
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