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Abstract. Heat transfer phenomena are related to several applications in different scientific branches. Advection-
diffusion problems with spatial properties variation describe the wave development associated with a physical
change in heterogeneous media or multi-layered materials, such as laminated media or conjugated problems. Fur-
thermore, an incompressible thermally developing laminar flow with hydrodynamically developed fluid, known as
the Graetz problem, is a typical example of this phenomenon . However, the fluid property variation imposes some
mathematical challenges to predict accurate solutions. The Strong Stability Preserving (SSP) methods are capable
of numerical schemes to increase their accuracy order while maintaining the original stability properties from their
generator Euler method. This methodology is developed basically by rewriting the multistage scheme as a combi-
nation of steps in the Euler method and introducing a time step barrier. On the other hand, the Generalized Integral
Transformation Technique (GITT) is a hybrid numerical-analytical approach that provides an infinite system of
coupled ordinary differential equations (ODE) that needs to be solved numerically by truncating the expansion.
Indeed, GITT consists of this solution procedure characterized by a hybrid analytical-numerical nature. Therefore,
the present work studies the SSP Runge-Kutta schemes compared to the GITT to solve the Graetz problem in the
absence of the axial diffusion.

Keywords: Graetz Problem, Strong Stability Preserving methods, Explicit Runge-Kutta schemes, Generalized
Integral Transform Technique.

1 Introduction

The cooling process in heat exchangers is a recurrent topic in scientific and industrial problems. These
phenomena have a vast range of applications that encompass the cooling of electronic devices and turbines [1, 2].
The Graetz model is a set of partial differential equations that describe the heat transfer in a laminar flow between
parallel plates [2]. This formulation allows evaluating the heat transfer in several engineering devices.

Generally, the non-linear nature of diffusion-advection mathematical models narrows the employment of the
classical analytical solution [3–5]. Therefore, discrete numerical schemes as Finite Difference Methods (FDM),
Finite Volume Methods (FVM), and Finite Element Methods (FEM) are widely adopted. However, numerical
instabilities and low-order temporal schemer require a mesh refinement, but the computational cost increases sub-
stantially. Thus, it is highly desirable to control the accuracy while maintaining the numerical stability properties
and avoiding a prohibitive computational cost [6]. The Strong Stability Preserving (SSP) methods are an appropri-
ate methodology to raise the numerical order keeping the stability [7].

In Cabreira et al. [2] comparisons were made between solution profiles for the Graetz problem of discrete
methods and numerical-analytical techniques, showing that the results were satisfactory despite the considerable
computational cost. The first formulation presented for temporal discretization of the SSP method was developed
by Shu Osher in 1998. Inspired by the concepts of decreased total variation. In this work written by Shu, second
to fifth order Runge-Kutta methods were implemented. In Gottlieb et al. [7], Shu, Gottlieb and Ketcheson made a
study of Runge-Kutta methods, where they presented optimal parameters for the second and third order methods
of two and three stages respectively and, furthermore, proved that it is not possible to obtain a four-stage, fourth-
order method with non-negative coefficients. In the work written by Moraes [6] it shows a comparative study
of explicit, implicit and implicit SSP Runge-Kutta methods, in addition to the numerical barrier study for the
implemented methods, in addition to the computational cost study of SSP methods. The same result showed that
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the cost decreased when implementing SSP methods.
The main objective of this work is to study the Strong Stability Preserving Runge-Kutta (SSP Runge-Kutta)

method in Graetz’s problem. Studies of stability and decay of the approximation error will be carried out. Strong
Stability Preserving methods are methods of high temporal order and capable of preserving non-linear numerical
stability. As the solution profiles generated by hyperbolic partial differential equations tend to have abrupt vari-
ations in properties and discontinuities, the SSP method becomes a great implementation option [7]. Moreover,
the numerical results are compared with the solutions provided by numerical-analytical method called Generalized
Integral Transformation (GITT) [8, 9].

2 Mathematical Model

The dimensionless differential model for the problem of forced convection between parallel plates of an
incompressible laminar flow developed hydrodynamically and developing thermally has interesting hypoteses,
such as the predominance of viscous forms, that is, absence of mixture in the fluid; the specific mass is constant and
the coefficient of thermal expansion is zero; as the flow is hydrodynamically developed, the transversal component
of the velocity is zero. In addition, there is no power generation or heating by viscous dissipation during the
process. Therefore, we have the following formulation:

u(y)
∂T

∂x
= α(

∂2T

∂x2
+
∂2T

∂y2
), where 0 ≤ y ≤ H

2
and 0 ≤ x (1)

with the following boundary conditions:

(
∂T

∂y
)y=0 = 0, T (0, y) = T0, (

∂T

∂x
)x→∞ = 0 (2)

where α is the thermal diffusivity, T0 and Ts are constants that represent the inlet temperature in the duct and
temperature in the duct wall, H is the distance between the parallel plates, but since the flow is laminar, the
domain in the transversal direction limited to 0 ≤ y ≤ H

2 .
The Figure 1 the representation of the temperature profile for a laminar flow between parallel plates with a

constant temperature at the beginning of the flow, and with a diffusive characteristic along the duct.

Figure 1. Temperature profile between parallel plates.

The following transformations is performed in the variables:

η =
y
h
2

, ξ =
x

L
, θ =

T (x, y) − Ts
To − Ts

, u∗(η) =
u(y)

u
(3)

The velocity profile of the fluid in the duct is given by the Hagen-Poiseuille equation, considering the case of
a laminar flow of Newtonian fluids:

u∗(η) =
u(y)

u
=

3

2
[1 − (

y
H
2

)2] =
3

2
(1 − η2) (4)

After due replacement of dimensionless variables and considering cases where axial diffusion can be ne-
glected, for high Péclet numbers, the governing equation has the following formulation.
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w(η)
∂θ(ξ, η)

∂ξ
=
∂2θ(ξ, η)

∂η2
, em 0 ≤ η ≤ 1. (5)

where w(η) = 3
4 (1 − η2) and the boundary and entry conditions are given by:

∂θ(ξ, 0)

∂η
= 0 and θ(ξ, 1) = 0. (6)

θ(ξ, η) = 1, in ξ = 0. (7)

2.1 SSP Explicit Runge-Kutta Methods

The methods used in this work are explicit. However, the Shu-Osher formulation was implemented more
generally. This representation is known as ”modified Shu-Osher formulation” [6].

u(i) = viu
n +

m∑
j=0

αij(u
(j) + ∆t

βij
αij

F (u(j))) where 1 ≤ i ≤ m+ 1. (8)

Evidently, the equation must respect.

viu
n +

m∑
j=0

αij = 1 where 1 ≤ i ≤ m+ 1. (9)

It is possible to obtain a convex combination of advanced Euler steps whenever αij , βij and vi are positive
[7]. Now, the constants of the methods used in this paper for the discretization of the Graetz problem will be
displayed.

Below, we have the explicit SSPRK(2,2) method.

α =


0 0

0 0

0 1
2

 β =


0 0

1 0

0 1
2

 v =


1

1

1
2


Now, we have the constants of the explicit SSPRK(3,3) method.

α =


0 0 0 0

0 0 0 0

0 1
4 0 0

0 0 2
3 0

 β =


0 0 0 0

1 0 0 0

0 1
4 0 0

0 0 2
3 0

 v =


1

1

3
4

1
3


Finally, the constants of the explicit SSPRK(5,4) method.

α =



0 0 0 0 0 0

0 0 0 0 0 0

0 α3,2 0 0 0 0

0 0 α4,3 0 0 0

0 0 0 α5,4 0 0

0 0 α6,3 α6,4 α6,5 0


β =



0 0 0 0 0 0

β2,1 0 0 0 0 0

0 β3,2 0 0 0 0

0 0 β4,3 0 0 0

0 0 0 β5,4 0 0

0 0 0 β6,4 β6,5 0


v =



1

1

v3,1

v4,1

v5,1

0


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Table 1. Coefficients α and β of the SSPRK(5,4) method [7].

Coefficient Value Coefficient Value

α3,2 0.555629 β2,1 0.391752

α4,3 0.379898 β3,2 0.368410

α5,4 0.821920 β4,3 0.251891

α6,3 0.517231 β5,4 0.544974

α6,4 0.096059 β6,4 0.063692

α6,5 0.386708 β6,5 0.226007

Table 2. Coefficients v of the SSPRK(5,4) method [7].

Coefficient Value

v3,1 0.444370

v4,1 0.620101

v5,1 0.178079

3 Results and discussions

The Order Graph is used to verify the variation of the error in view of the mesh refinement, these types of
representations are widely used for numerical proof. Therefore, we know in the literature that the SSPRK(2,2)
method has a second order in its formulation, however the SSPRK(3,3) method has a third order and finally the
SSPRK(5,4) method has a fourth order , even if it has 5 stages. Thus, we see in the graphs that the order line has a
decay equal to the order of implementation of the methods, a result that confers the correct implementation of the
formulations in the computational mode.
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Figure 2. SSPRK Method Order Graphic

To certify the validity of the implementation of the explicit SSP Runge Kutta method, we compare it with a
numerical analytical method known as GITT. In the graphs we see four different end times. In the figure 3a and
3b we have the first showing the final time of Tf = 0.001 and the second showing the final simulation time of Tf =
0.004. Figure 3c and 3d shows the final time of Tf = 0.01 and Tf = 0.04 respectively.

We see that the results are satisfactory, because in the three SSP Runge Kutta methods covered in this paper,
we have profiles almost the same as the analytical numerical solution (GITT). Looking at the graphs, it appears
that for end times very close to the entrance of the duct, we have a sharper curve, in contrast, profiles of solutions
away from the beginning of the duct have a smoother curve. This fact is mainly due to physical reasons, the fluid
exchanges heat with the duct wall and, over time, they enter into thermal equilibrium.
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(a) (b)

(c) (d)

Figure 3. Comparison between SSPRK and GITT methods [7].

We know that for the SSP method to be efficient, the non-linear restriction of the step in time must be re-
spected. That said, analyzes were carried out in order to find a numerical SSP barrier for each method implemented.
First, the Graetz problem was solved with the Explicit Euler where we used the respective value of its step in time
as a reference (dξRef = 0.000001) to find a numerical barrier. In the figure 4a4b4c we have the first graph show-
ing stability in the SSP method for a step in a time equal to the reference time and also for a 20% increase in
the reference time. However, for an increase of 25% we see an instability of the method. Therefore, we have a
numerical barrier for the SSPRK(2,2) method with a value of dξ = 1.2 ∗ dξRef . In the second figure, we see that
the SSPRK method (3.3) has stability for an equal time step and for a 56% increase in the reference time step,
however if we increase 57 % we see numerical instability, so we have a barrier of dξ = 1.56 ∗ dξRef . Finally, for
the SSPRK(5,4) method we see stability for an equal value and for a value 132 % higher than the reference step,
but for a value 133% higher, the method has instability, with that, we see that the method has a numerical barrier
of dξ = 2.33 ∗ dξRef .
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(a) (b)

(c)

Figure 4. Numerical barrier study of the SSPRK methods [7].

4 Conclusions

The objective of this work was to propose solutions to the Graetz equation with SSP Runge Kutta methods
two stages, three stages and 5 stages. First, we analyze the order chart of the implemented methods. We see a
satisfactory result, because the slope of the line is consistent with the order of the method used. Then, solution
profiles were proposed at four different times and compared with a numerical analytical method called GITT. From
the analysis of the graphs, we have an excellent result, because the error between the comparison of the methods
is very small. Showing that the SSP Runge Kutta method is great for solving diffusion problems. Finally, the
numerical barrier of the SSP method was verified. Using a reference time step from the explicit Euler method, the
implemented SSP methods have a loss of stability with a certain percentage increase in the reference time step.

Thus, we show that the problem was successfully implemented and the results obtained are in accordance
with the conditions of the problem.
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preservação de Estabilidade Numérica Não-Linear. IME, Rio de Janeiro.
[7] Gottlieb, S., Ketcheson, D. I., & Shu, C.-W., 2011. Strong stability preserving Runge-Kutta and multistep time
discretizations. World Scientific.
[8] Cotta, R. M., 1993. Integral transforms in computational heat and fluid flow. CRC Press.
[9] Knupp, D. C., Cotta, R. M., & Naveira-Cotta, C. P., 2015. Fluid flow and conjugated heat transfer in arbitrarily
shaped channels via single domain formulation and integral transforms. International Journal of Heat and Mass
Transfer, vol. 82, pp. 479–489.

CILAMCE 2020
Proceedings of the XLI Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.

Natal/RN, Brazil, November 16-19, 2020


	Introduction
	Mathematical Model
	SSP Explicit Runge-Kutta Methods

	Results and discussions
	Conclusions

