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Abstract. The study of particle sedimentation in viscous fluids plays a fundamental role in several applications
of different scientific and industrial branches. Furthermore, it is crucial to emphasize the relevance of this pro-
cedure in the control of pressures inside oil well. For instance, the transportation and suspension of sediments
during the disable operation and diminishing the hydrostatic pressure on the annular to avoid the oil well collapse.
Although the extensive applicability of the sedimentation phenomenon, the problem complexity is related to pro-
vide reliable predictions. Hence, mathematical models accomplish a considerable approach in experimental and
theoretical researches. The highly nonlinear characteristics of the model and the development of rarefaction and
shock waves in concentration profiles require appropriate numerical schemes for prediction solutions. Nonethe-
less, the employment of implicit methods is infeasible due to high computational effort. Moreover, there is an
absence of numerical-theoretical studies of the sedimentation phenomenon in non-Newtonian fluids. The present
research employs the non-oscillatory corrector-predictor explicit method developed by Nessyahu and Tadmor for
the numerical simulation of batch settling in viscoelastic fluids.
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1 Introduction

Several industrial and scientific branches encompass sedimentation phenomena. The sedimentation machines
in the mining industry, batch settling in geophysical researches, and drilling fluids analysis in the petroleum field
are some examples. Notably, the solid particle sedimentation in a drilling fluid confined in the annular between
the cement and an isolation tool might induce severe operational problems [1]. For instance, the Annular Pressure
Build-Up (APB), i.e., when the pressure in the annular increases abruptly because of the heat gradients in the
wells production phase [2]. This process can destroy the oil well causing a catastrophe. Hence, solid particle
sedimentation has been widely investigating due to immense challenges in its accurate prediction [3].

The initial investigations of the sedimentation phenomenon occurred at the beginning of the 20th century [4].
However, only about 50 years later, it was developed the first simplified theory for the batch sedimentation. The
research proposed a kinematic sedimentation theory based on the propagation waves’ ideal monodisperse suspen-
sion [5]. Thereby, mathematical models have been widely developing for the comprehension of the phenomenon
[6]. Extensions of the theory cited were proposed, as in the study of continuous sedimentation of a suspension with
a nonconvex flux law presented by Petty [7] and in the development of an entropy weak solution to determine the
physically relevant solutions by Bustos et al. [8].

Appropriate numerical methods became extremely important for the predictions of batch settling phenomena.
Nonetheless, the non-linear characteristics of the mathematical formulation and the high gradients in the concentra-
tion profiles generate some numerical challenges to yield accurate solutions. The Finite Difference Method (FDM)
has been employing in the sedimentation simulation, but numerical instabilities might corrupt the solution through
undesirable oscillations [9]. On the other hand, a polydisperse model has been solving with a non-oscillatory
difference scheme, called Nessyahu-Tadmor (NT) method [10].

Recently, an adaptative multi-resolution (WENO) and implicit-explicit (IMEX) schemes were implemented
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in sedimentation models to reduce costs and inflexibility [11, 12]. Although many authors investigated the pre-
diction of settling suspensions through mathematical modeling, there is literature lacks a phenomenological model
to predict the particle settlement in a non-newtonian fluid. Thus, the present research employs the non-oscillatory
corrector-predictor explicit method developed by Nessyahu and Tadmor [10] for the numerical simulation of batch
settling in viscoelastic fluids model developed by Rocha [3].

2 Mathematical Modeling

The mathematical modeling of the unidimensional sedimentation in drilling fluids can be described by a
system of partial differential equations, composed by mass conservation and linear motion equations, besides
empirical and constitutive correlations to describe interaction forces and the permeability [3].

In the one-dimensional settlement in the direction z, the continuity and the movement equation to the solid
phase, considering the solids density constant, are respectively given by [3]:

∂εs
∂t

+
∂(εsυs)

∂z
= 0 (1a)

ρsεs

(
∂υs
∂t

+ υs
∂υs
∂z

)
=
∂Ts
∂z

+m+ εs(ρs − ρl)g (1b)

for 0 ≤ z ≤ L0 and t ≥ 0

where L0 is the height of the suspension and the following boundary conditions:

qs = εsυs(z = 0, t) = 0, qs = εsυs(z = L0, t) = 0 (1c)
εs(z, t = 0) = εs0, (1d)

The set of equations 1 are based on the Kynch’s sedimentation theory [5]. It is valuable to emphasize the im-
portance of his assumption that the local sedimentation velocity is a function only of the local volumetric solids
concentration to solve the problem [13]. In both equations, t, z and g refer to time, the axial position of the sed-
imentation column and to gravity acceleration, respectively. The volumetric concentration, density, velocity and
solids tension are represented by εs, ρs, υs and Ts. Moreover, the resistive force is characterized by m and the
liquid density by ρl. The homogeneity of the suspension is demonstrated by the initial condition, where εs0 is the
initial concentration. The nullity of the solids flux, qs, in the bottom and the top of the sedimentation column is
expressed in the two boundary conditions.

After the introduction of the rheological power-law model and constitutive hypothesis, the balance force in
the system has been define completely which yield the expression to calculate the sedimentation velocity in the
solid phase [3]:
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which the sphericity, permeability of the environment and the pressure gradient are considered, respectively [3]:

Θ(φ) = −3, 45φ2 + 5, 25φ− 1, 41 (3a)
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where φ is the sprericity of the particle. K and dp represents the environment permeability and the medium
diameter of the particles, respectively. K0 and β are parameters. Moreover, Ps and Psref are the solids pressure
and the solids pressure in a reference concentration εsref .

The dimensionless concentration and parameters are given as

ξ =
t

tf
; η =

Z

L0
; θs =

εs
εs0

;

us =
υs
υstk

; S =
υs0tf
L0

(4)
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where ξ and η are dimensionless versions of t and z, respectively, θs is the dimensionless solid concentration, us is
the dimensionless solid velocity, S is a dimensioless parameter and average velocity υstk is the terminal velocity
of an isolated particle [10]:

υstk =
d2p(ρs − ρf )g

18µsusp(λ∗)
(5)

The dimensionless form of the mathematical model is given by:
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= 0 (6a)
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for 0 ≤ η ≤ 1 and ξ ≥ 0

with the following boundary conditions:

Fs = θsus(η = 0, ξ) = 0, Fs = θsus(η = 1, ξ) = 0 (6c)

θs(η, ξ = 0) = 1

The dimensionless equations 6 are highly non-linear model. Thus, the model has been solved with non-
oscillatory Nessyahu-Tadmor method [10].

3 Results and Discussions

In this section we present the results of the numerical predictions. The input parameters used in each studied
case are listed in Table 1 as described by Rocha [3]. Firstly, a mesh convergence was analysed for different
dimensionless time. The Figures 1a and 1b show the axial dimensionless concentration profile θs for different
dimensionless time ξ while Figure 1a was obtained for ξ = 0.5 and Figure 1b for ξ = 1.0. Each line color present
the solution for a grid size. As can be observed, the mesh convergence was obtained for 801 points in the mesh.
The results were constructed with the converged mesh.

(a) (b)

Figure 1. Axial concentration profiles for different grids with dimensionless time (a) ξ = 0.5 and dimensionless
time (b) ξ = 1.0.

The Figure 2 shows behavior of the dimensionless solid concentration profile for different time. As can be
seen, each profile is divided in two regions along the time. This result presents the formation of a clarified zone
in the top of the column and a concentrated zone in the bottom. As presented by Kynch [5], solids concentration
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Table 1. General operation conditions parameters following Rocha [3].

General operation data Value

K0 3.66600 · 10−2 m2

A 5.33445

β 2.13699

Fluid viscosity (µ) 4.50000

Fluid density (ρl) 8.91230 · 102 kg.m−3

Solids density (ρs) 2.71080 · 103 kg.m−3

Medium diameter of the particles (dp) 4.08030 · 10−5 m

Initial concentration (εs0) 0.14000% v/v

Volumetric concentration (εsm) 0.50000% v/v

Reference concentration (εsref ) 0.14700% v/v

Suspension density (ρsusp) 1.14590 · 103 kg.m−3

Shear rate (λ) 1.60612 s−1

Consistence index (M ) 1.25000 Pa.sn

Fluid behavior index (n) 0.38000 kg.m−2.s−2

Initial suspension height (L0) 0.21000 m

Sphericity (φesf ) 0.80000

Final time (tf ) 3.15400 · 107s

Figure 2. Axial concentration profile for different dimensionless time.

behavior in settling processes presents three different regions, where a free settling zone, a non compression zone
and a compression zone are identified. Therefore, the solution seems to predict the phenomenon. Moreover, the
sedimentation process increases both regions.

The Figures 3a and 3b shows the evaluation of dimensionless solid concentration in different depth positions
where the Figure 3a present the behavior in clarified zone while Figure 3b in concentrated zone. As shown by
the results, the concentration in the clarified zone tends to be zero along the time. Otherwise, the concentration
zone increases significantly during the sedimentation process. The prediction is similar to batch tests presented
by McCabe et al. [14]. They identified a free settling zone, where particles falls with no contact with others; a
non-compression zone, where there are increases in the concentration and the sedimentation rate of the particles
decreases; and a compression regime, where particles accumulates as they have contact with each other. We can
identify similarities in the data with the experimental description of how the sedimentation phenomenon occurs.
Therefore, we can assume that the phenomenological model proposed may predict with reliability the settling of
particles.
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(a) (b)

Figure 3. Concentration time evaluation for different depth positions for clarified zone (a) and concentrated zone
(b).

4 Conclusions

This research presented a numerical simulation of the batch settling in non-Newtonian fluid. The mathemat-
ical formulation developed by Rocha [3] was solved with a non-oscillatory Nessyahu-Tadmor scheme. As shown
by the results, the simulation solution converged as the grid size rises. Then, we can expect that the program
proposed is capable of simulate the phenomenon without discontinuities that causes error in the prediction.

It is also notable that the data illustrates a solids deposition in the bottom of the well, suggesting that there
is a solids accumulation. Moreover, in the clarified zone the solids concentration tends to be zero in the solution.
These results seems to satisfy theories of the sedimentation phenomenon behavior. However, the predictions of this
study are restricted to theoretical analysis. A experimental work is required to provide reliability in the solution
proposed.
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