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Abstract. This work presents semianalytical solutions for the deformation induced by gravitational compaction in
sedimentary basins. Formulated within the framework of thermo coupled plasticity–viscoplasticity at large strains,
the modeling dedicates special emphasis to the effects of material densification associated with large irreversible
porosity changes on the stiffness and hardening of the sediment material. The analysis is restricted to the fully
drained setting in which excess pore-pressures are disregarded. In addition, the thermal problem is posed, for-
mulating the thermal field with constant parameters. These solutions can be viewed as reference solutions for
verification and benchmarks of basin simulators.

Keywords: sedimentary basin, large strains, thermo coupled elastoplasticity-viscoplasticity, semi-analytical ap-
proach.

1 Introduction

The sedimentary basins are natural geological structures with significant economical interest due to hydro-
carbons, groundwater, and mineral reserves. Exploration of these resources need a understanding of the coupled
phenomena that occur over timescale, and for this reason, the models (analytical and numerical) are of considerable
importance as they permit to test different scenarios of a basin history.

The mechanical model used to describe compaction through time is one of the key aspects of basin simulation
as tectonic subsidence and basin deformation are strongly coupled with fluid flow and thermal evolution. For
example, in siliciclastic rocks two main types of compaction mechanisms can take place, the purely mechanical
and chemo-mechanical compaction. The first prevails in the early stages of a newly deposited layer due to grain
rearrangement and subsequent pore fluid expulsion, whereas the second progressively dominates as continuous
burial increases sediments temperature and effective stresses resulting from dissolution, diffusion, and precipitation
of minerals, known as intergranular pressure solution (IPS) (Schmidt and Mcdonald [1]).

Lemos et al. [2] presents the development of semianalytical solutions for the deformation induced by grav-
itational compaction in sedimentary basins. These solutions can be viewed as reference solutions for verification
and benchmarks of basin simulators. The mechanical compaction is modeled with a plastic component, while for
chemo-mechanical compaction a viscoplastic model is used. Formulated within the framework of coupled plastic-
ity–viscoplasticity at large strains, the modeling dedicates special emphasis to the effects of material densification
associated with large irreversible porosity changes on the stiffness and hardening of the sediment material.

Based on this model, the work presents the formulation of analytical and semianalytical reference solutions
that describe the deformation and thermal processes in a sedimentary basin. This research corresponds to the initial
results of the study of the thermal field and its effects on the behavior of the sedimentary basin.

2 Statement of the thermo-mechanical problem

The thermo-mechanical problem under consideration refers to the evaluation of stresses, strains and temper-
atures developing in a sedimentary basin under oedometric conditions during the formation phases by continuous
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accretion of sediment material. The analysis shall focus on deformation induced in the basin by purely mechanical
and chemo-mechanical compaction processes.

While purely mechanical compaction originates mainly from rearrangement of the solid particles during
burial and can thus be modeled in the framework of plasticity, chemo-mechanical compaction resulting from
IPS phenomena is generally associated with creep-like deformation. In addition, compaction process in a sed-
imentary basin generally involves large strains, the reduction in porosity of the sediment material exceeding in
many situations values as high as 50% (Houseknecht [3]). The theoretical framework of coupled elastoplastic-
ity–viscoplasticity at finite strains appears therefore suitable for accurate description of the mechanics controlling
the basin deformation.

The temperature of the sedimentary basins increases with depth. Therefore, the heat flow is upward, trans-
ported from the interior to the exterior of the Earth, where the heat source originates from radiogenic processes.
In the asthenosphere this heat is carried mainly by convection, while in the lithosphere it is carried mainly by
conduction. Although the water flow can also transport heat in the basins, the movement of the fluids is usually
very slow, and it can be considered that in many cases the heat transport is controlled by conduction (Bethke [4];
Jessop and Majorowicz [5]; Bjørlykke [6]; Cloetingh et al. [7]).

For the purpose of formulate semianalytical solutions for the compaction process in sedimentary basins, a
simplified configuration based on the following assumptions is adopted: (a) sedimentation occurs in oedometric
conditions; (b) the sediment has homogeneous and isotropic mechanical properties in its reference state, that is, the
instant it is deposited at the top of the basin; (c) the effect of pore pressure is disregarded in the analysis, which is
equivalent to addressing the particular case of highly permeable sediment material (fully drained conditions); (d)
mechanical evolution is decoupled from the thermal evolution of the basin, disregarding the effect of the thermal
gradient on the material properties and strains; and (e) thermal evolution is decoupled from mechanical evolution,
disregarding the effect of compaction on thermal properties.

The sedimentary basin undergoing compaction is modeled as an infinite layer, perpendicular to the e3 di-
rection and lying on a rigid substratum along the plane x3 = 0. Despising the tectonic activity, the gravitational
field g = −ge3 stands for the only external loading in the compaction process. Additionally, the anisotropy of
constitutive properties of the material in its reference state and that induced by compaction processes are neglected
in the analysis. In this simplified framework, the physical quantities involved in the problem only depend on time
and the vertical coordinate x3. The position of a material particle in the sedimentary layer at a time t is defined by
coordinate as x3, whereas the instant when the particle is deposited at the top of the layer is referred to as T (x3, t).

Due to the continuous deposition of sediments at the top of the basin, the sediment layer thickness is time
dependent. Whereas the top of the layer remains horizontal, the position of the upper boundary is defined by the
gravitational compaction law x3 = H(t) (see Fig. 1).

Figure 1. Geometry model for sedimentary basin and thermo-mechanical loading conditions

2.1 Field equations

From the mechanical point of view, the quasistatic BVP is defined by two field equations. The momentum
balance equation (neglecting the inertial effects) and the mass balance equation (in the Eulerian and Lagrangian
formulations) reads as follows:

divσ(x3, t) + ρ(x3, t)g = 0,
∂ρ(x3, t)

∂t
+ div (ρ(x3, t)u(x3, t)) = 0 and ρ(x3, t) =

ρ0
J(x3, t)

, (1)
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where σ is the Cauchy stress tensor, ρ is the mass density of the sediment material, u is the Eulerian velocity field
of the sediment particles, ρ0 is the initial mass density and J = dΩt/dΩ0 is the Jacobian of the transformation,
that is, the ratio of the volume of a particle at the current configuration to the initial configuration.

The initial conditions of the physical quantities associated with the material particles seated at the top of the
sedimentary basin (viewed as an open material system) and the boundary condition of the velocity field of the
particles in contact with the rigid substrate are expressed by:

σ(H(t), t) = 0, J(H(t), t) = 1, ρ(H(t), t) = ρ0 and u(0, t) · e3 = 0. (2)

In the context of oedometric compaction setting, which implicitly disregards the effects of plate tectonics,
together with the disregard of loading induced anisotropy and the assumption of homogeneity of the deposited
sediment material along the whole accretion period, the general form for the velocity and stress fields is expressed
as

u(x3, t) = u3(x3, t)e3 and σ = σh(x3, t)(e1 ⊗ e1 + e2 ⊗ e2) + σv(x3, t)e3 ⊗ e3. (3)

From the thermal point of view, the heat conduction equation is written in Eulerian form as

ρc
dθ(x3, t)

dt
+ divq(x3, t) = r, with q(x3, t) = −K · ∇θ(x3, t), (4)

where c is the specific heat, θ is the temperature field, q is the heat flow vector (Fourier’s law), r is the heat
generation per unit volume and K is the thermal condutivity tensor of the porous medium.

The thermal field has the following initial and boundary conditions:

θ(H(t), t) = θ0 and q(0, t) · e3 = q0, (5)

where θ0 is a constant prescribed value for the temperature field associated with the material particles seated at
the top of sedimentary basin and q0 is a constant prescribed value for the heat flow in the contact with the rigid
substratum.

2.2 Loading and geometrical transformation

The magnitude of the loading applied to the sedimentary basin is characterized by the mass of sediments
deposited per unit area Md(t) on the top of the basin during the time interval [0,t]:

Md(t) =

∫ H(t)

0

ρ(x3, t)dx3. (6)

The vertical stretch Λ(x3, t) defines the ratio between the height of a particle in the current configuration at
time t and its height in the reference state at time T (x3, t) (see Fig. 2).

The gradient of the geometrical transformation of a particle between the reference and the current states under
oedometric conditions takes the following form:

F (x3, t) = e1 ⊗ e1 + e2 ⊗ e2 + Λ(x3, t)e3 ⊗ e3. (7)

The Eulerian gradient of the velocity field ∇ u is related to F according to ∇ u = Ḟ · F−1, which leads to
the strain rate tensor d = 1

2 (∇ u+ t∇ u).

CILAMCE 2020
Proceedings of the XLI Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.
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Figure 2. The particle vertical stretch

2.3 Constitutive equations, plastic and viscoplastic behavior

The sediment is modeled as an isotropic elastic–plastic–viscoplastic material that is subjected to large strains.
The anisotropy induced by the compaction on the sediment mechanical properties is disregarded. In the geometric
transformation, the elastic strains are assumed to remain infinitesimal, while large strains produced are irreversible
nature.

Whereas the solid phase that constitutes the skeleton particle is incompressible, the solid mass balance implies
that the Eulerian porosity (current pore volume fraction) is expressed as (Dormieux and Maghous [8])

ϕ(x3, t) = 1− 1− φ0
J(x3, t)

≈ 1− 1− φ0
Jir(x3, t)

, (8)

where φ0 = ϕ(H(t), t) refers to sediment porosity in the reference state and Jir is the irreversible component of
the Jacobian transformation, which is close to the total Jacobian Jir ≈ J owing to the assumption of infinitesimal
elastic strains.

The equation 8 relates current porosity to volumetric dilatation of the sediment material during burial. It is
expected that the large porosity variation modifies the material elastic properties (Dormieux and Maghous [8]). The
progressive reduction in porosity induces an increase in stiffness of the skeleton elastic modulus, which is modeled
by the Hashin–Shtrikman upper bounds formulated for isotropic composite materials. These variational bounds
coincide with the micromechanical estimates derived from Mori-Tanaka scheme (Maghous et al. [9]), which are
known to reasonably model the elastic properties of isotropic porous media (Zaoui [10], Dormieux et al. [11]). The
expressions for the bulk and shear moduli as a function of porosity are given by

K(ϕ) =
4ksµs(1− ϕ)

3ksϕ+ 4µs
and µ(ϕ) =

µs(1− ϕ)(9ks + 8µs)

ks(9 + 6ϕ) + µs(8 + 12ϕ)
, (9)

where ks and µs are the bulk and shear moduli of the solid phase, which are assumed to be unaffected by com-
paction processes.

A strong coupling between elasticity and plastic-viscoplastic component of the constitutive behavior is in-
troduced by equations 8 and 9. The state equations describing the stress–strain relationship can be formulated in
rate-form as follows (Dormieux and Maghous [8]):

σ̇ =
˜
C : (d− dir) +

˜
Ċ :

˜
C−1 : σ =

˜
C : (d− dir) + J̇ir

∂
˜
C

∂Jir
:

˜
C−1 : σ, (10)

where σ̇ is the Cauchy stress rate tensor, dir is the irreversible part of the strain rate tensor, and the fourth-order
tensor

˜
C is the material elastic stiffness moduli, in which the expression under the assumption of isotropy is

˜
C(ϕ) = (K(ϕ)− 2µ(ϕ)/3)1⊗ 1 + 2µ(ϕ)

˜
1, (11)

where 1 and
˜
1 refer respectively to the second-order and fourth-order identity tensors.

The term
˜
Ċ :

˜
C−1 : σ in 10 represents the influence of large irreversible strains on elastic properties.

The plastic and viscoplastic strain components are additively related to the irreversible strain by dir = dp +
dvp.
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The purely mechanical compaction is represented by the plastic component of the constitutive model. To
the plastic yield surface we resort to the concept of so-called ”cap models” for the formulation of a simplified
isotropic plastic criterion. Referring to the p × q plane, the yield surface is bounded in the dilation domain by a
straight line that stands for the brittle failure regime (critical line), while the side corresponding to ductile failure
and material hardening (contracting state) is also approximated in this analysis by an inclined straight line. For
the plastic strain rate an associated flow rule was adopted. The plastic hardening law, that describes the evolution
of the consolidation pressure (pc) due to the irreversible material densification, is based on limit analysis and
micromechanics (Barthélémy et al. [12], Brüch et al. [13]).

The chemo-mechanical compaction is represented by the viscoplastic component of the constitutive model. In
a similar way than for plastic behavior the viscoplastic yield surface is defined resorting once again to the concept
of “cap models”. The generalized Perzyna’s overstress theory (Perzyna [14]) bases the time-dependent component
of the strain rate. The viscoplastic hardening law, that describes the evolution of the consolidation pressure (pvp)
due to the irreversible material densification, has been formulated (Brüch et al. [15]) and stems from the heuristic
idea that similarity can be preserved between the plastic and viscoplastic models.

The plastic and viscoplastic yield criterion are described by

fα(σ, h) = −1

3
trσ + a

√
1

2
s : s− h = 0, (12)

where α = p, vp for the plastic and viscoplastic yield criterion, h = pc, pvp for the plastic and viscoplastic
consolidation pressure (the hardening parameters in the model), while a is a positive scalar that controls the slope
of the ductile part of yield surfaces.

The plastic and viscoplastic strain rate are defined by

dp = χ̇
∂fp

∂σ
and dvp =

〈fvp〉
ηvp

∂gvp

∂σ
, (13)

where χ̇ is the nonnegative plastic multiplier rate, 〈〉 is the Macaulay brackets, ηvp is the viscosity coefficient, and
gvp is the viscoplastic potential defining the direction of viscoplastic strain rate. An associated flow rule gvp = fvp

shall be assumed in the subsequent analysis.

3 Thermo-Mechanical formulation

As explained in Lemos et al. [2], the evolution of the sedimentary basin under compaction processes is divided
into five consecutive phases, distinct from each other by the behavior ranges involved along the basin layers. Each
domain of behavior in each phase is described by a first-order nonlinear partial differential system of equations
given by:



∂Λ

∂x3
=
ρ0g

Fαv1
− Fαv2
Fαv1

Λ
∂Jir
∂x3

∂σh
∂x3

=
Fαh1
Λ

∂Λ

∂x3
+ Fαh2

∂Jir
∂x3

∂σv
∂x3

=
ρ0g

Λ
∂Jir
∂x3

= − Gα1 Jir
Λ(1 +Gα2 Jir)

∂Λ

∂x3
∂u3
∂x3

=
−Ṁdg

Fαv1 + Fαv2Λ
∂Jir
∂x3

/
∂Λ

∂x3

, (14)

where α = e, p, vp, v for the elastic, elastoplastic, elastoplastic–viscoplastic and elasto-viscoplastic domains, Fαβγ
and Gαγ (β = h, v and γ = 1, 2) are mechanical functions explained in Lemos et al. [2].

This system relates the unknown fields Λ, Jir, σh, σv, and u3 of the problem. These equations are completed
by the complementary constitutive relationships as well as by initial and boundary conditions. The solution of the
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mechanical problem is carried out incrementally, with the temporal discretization of the governing equations and
with the reduction of the PDE system into an ODE system. The incremental scheme as well as the solution to the
system of ordinary nonlinear differential equations is performed numerically using the MAPLE software. A finite
difference technique with Richardson extrapolation is used to solve the BVP.

As previously explained, the model developed disregards the thermo-mechanical coupling. Additionally,
thermal properties are considered constant throughout the analysis. The thermal field is obtained by Fourier’s
series, separating the stationary θ1 and transient θ2 response as

θ(x3, t) = θ1(x3, t) + θ2(x3, t) =
(

(H(t)− x3)
q0
k

+ θ0

)
+

( ∞∑
n=1

bn(t)φn(x3)

)
. (15)

In this equation, the stationary response θ1 appears as a function of the temporal variable t. However, the
temporal dependence is only due to the compaction law H(t), that determines the size of the material domain. The
terms bn(t) and φn(x3) in 15 are expressed as

bn(t) = αne−λn
2t and φn(x3) = cos(λnx3), (16)

where αn =

∫H(t)

0
ρc θ1(x3)φn(x3)dx3∫H(t)

0
ρc φn(x3)2dx3

and λn =
(2n− 1)π

2H(t)
.

4 Illustrative results

The problem description and data are presented in Lemos et al. [2]. Additionally, the thermal data used
for modeling of sedimentary material are: specific heat capacity c = 2.6 × 103 J/kg◦C, thermal conductivity
coefficient k = 1.2 W/m◦C, mass density ρ = ρ0, θ0 = 0◦C and q0 = 70 mW/m2.

(a) (b) (c)

Figure 3. (a) gravitational compaction law of the sedimentary basin, (b) Eulerian porosity profile along basin
thickness at t = T s and (c) temperature profile along basin thickness at t = T s.

At the scale of basin, a main feature in sedimentary basin simulation refers to assessment of the compaction
law t → H(t) (Fig. 3a). The level of basin compaction predicted by semianalytical solution at t = T s (end of
the accretion phase) is 52.2%. In the postaccretion period, the compaction level exhibits a slight decrease to reach
approximately 54% at t = T f (end of the analysis).

The Eulerian porosity ϕ(x3, T
s) is depicted in Fig. 3b. As expected, the material densification induced by

compaction at large strains is reflected by the decrease of porosity with depth.
The temperature profile θ(x3, T s) is depicted in Fig. 3c. Some comments are made about the behavior of

this variable: (a) the weak hypothesis of constant thermal properties for the sedimentary material (independent of
the variation in porosity and temperature) produces a stationary response θ1 with a constant associated gradient
∂θ/∂x3 = −q0/k (as can be seen in eq. (15) and Fig. 3c); (b) the characteristic time of thermal diffusion τ =
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L2/α, where L is the characteristic length and α = k/ρc, is small compared to the time scales of the sedimentary
basin, which explains the stationary response in Fig. 3c; (c) the weak hypothesis about the disregard of the influence
of the geothermal field on the mechanical evolution of the basin, which would have considerable influence on the
viscoplastic viscosity coefficient, accelerating the deferred deformation processes.

5 Conclusion

This work presented the development of new features for the reference solutions of the compaction processes
in sedimentary basins. Continuing the research presented in Lemos et al. [2], the work incorporated the thermal
response to the model. Assumptions that simplify the model were adopted to facilitate obtaining an analytical
response to the geothermal field, which will serve as a reference for the next steps of the research. From the
thermal point of view, the main characteristics exhibited by the model were the constant geothermal gradient and
the stationary response. From the mechanical point of view, the main characteristic was the absence of thermal
effects on the mechanical response of the sedimentary basin. The next developments are the incorporation of
thermal properties sensitive to the variation of porosity and temperature and the thermo-mechanical coupling of
the deformation of the sedimentary basin.

Acknowledgements. This work was financed by the Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Supe-
rior – Brasil (CAPES).

Authorship statement. All persons who meet authorship criteria are listed as authors, and all authors certify that
they have participated sufficiently in the work to take public responsibility for the content, including participation
in the concept, design, analysis, writing, or revision of the work.

References

[1] Schmidt, V. & Mcdonald, D. A., 1979. The Role of Secondary Porosity in the Course of Sandstone Diagenesis.
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Kaban, M., Hardebol, N., Bonté, D., Genter, A., Guillou-Frottier, L., Ter Voorde, M., Sokoutis, D., Willingshofer,
E., Cornu, T., & Worum, G., 2010. Lithosphere tectonics and thermo-mechanical properties: An integrated
modelling approach for Enhanced Geothermal Systems exploration in Europe.
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[12] Barthélémy, J. F., Dormieux, L., & Maghous, S., 2003. Micromechanical approach to the modelling of
compaction at large strains. Computers and Geotechnics, vol. 30, n. 4, pp. 321–338.
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