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Abstract. With the advance of numerical methods and the capacity of computers to solve problems of high 

computational cost, the dynamics of fluids in porous media started to give up with the simplifying hypotheses and 

started to not only solve the complete equations, but also allowed to incorporate coupled phenomena such as 

deformation of porous media, temperature, chemical reaction and electromagnetism. The first steps towards a more 

rigorous study from the mathematical point of view, necessarily involve the progressive incorporation of more 

rigorous equations as a state of the art in flow problems. The transition from Darcy’s law to Brinkman’s equations 

and even the direct numerical simulations (DNS) of the Navier-Stokes equations on a pore scale, started to take 

place in the current methods of predicting the hydrogeological behavior of materials. This work seeks, in a succinct 

and humble way, to highlight and propose an analysis of the possible equivalence between the Forchheimer term 

to simulate the nonlinear effects on the flow in porous media and the natural convective term of the Eulerian 

formulation of the conservation of the of momentum in fluids. Despite the equivalence being affirmed in some 

works, there seems to be a lack in literature concerning rigorous demonstrations of this affirmation. This paper 

uses tools such as the topology of metric spaces and the weak formulation in finite dimensional spaces in the 

analysis of the differential equations that govern the problem and seeks to be as clear as possible so that a reader 

not used to the mathematics involved can understand, at least, the central idea. 

Keywords: Porous media, fluid dynamics, nonlinear flows, Brinkman equation. 

1  Introduction 

The Brinkman equation (1949) was developed for the analytical solution of the problem of a viscous fluid 

flowing between a pack of identical spheres, seeking to calculate the frictional force between the fluid and the 

solid. The empirical relationship between pressure gradient and percolation speed given by Darcy did not allow 

the transition from a flow in a porous medium to a free flow to be simulated nor the use of a non-slip boundary 

condition. In the free flow condition, it is assumed that the permeability coefficient of the medium is infinite and 

that by replacing this limit in the equation of motion, the stationary Navier-Stokes equation is obtained without 

the inertial term. For media with low permeability, it is expected that the dominant term of the equation will then 

be seepage and that the Darcy equation will be recovered. Brinkman (1949) then proposed that the relationship 

between pressure gradient and flow velocity was given by: 

∇𝑝 =  −
𝜇

𝑘
𝒖 + 𝜇′∇2𝒖 (1) 

Where u(x) is defined in a domain 𝑈 ⊂ ℝ𝑛 ; 1 ≤ 𝑛 ≤ 3, where 𝑈 = {𝒖: ‖𝒖‖𝐿𝑝 < ∞| ‖𝐷
𝛼𝒖‖𝐿𝑝, ∀ 𝛼 ≥ 1}, 

with 𝐷𝛼  being the derivatives of order up to α, in the classic sense of the derivative (locally derivable). Equation 

(1) also allows the adoption of boundary conditions consistent with a physical flow problem. 

However, eq.(1) is classified as a second-order linear ordinary differential equation, making the relationship 

between the pressure gradient and flow velocity strictly linear for all u∈U. Laboratory tests carried out at the 

beginning of the 20th century by Forchheimer (1901) highlighted the non-linear character of the hydraulic gradient 

(J) - velocity (u) relationship for gradients with higher values. This non-linearity was also observed by Hubbert 

(1966), Scheidegger (1960) and Lindquist (1933), who proposed that such non-linearity is caused by the 
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appearance of inertial forces that, due to their higher order, were negligible for 𝑢(𝑥) ≤ 𝜀, 𝜀 being as small as 

desired. Nonlinear formulations for the J × u relationship have been proposed by researchers such as Kochina 

(1952), White (1935), Scheidegger (1960), Ergun (1949), Irmay (1964) and Carman (1937). 

The non-linearity discussed by the aforementioned researchers were, for the most part, described by empirical 

relationships, adjusted with parameters without a physical meaning. Other researchers among those cited sought 

to perform nonlinear regressions to adjust physical parameters such as porosity, drag coefficient, permeability and 

fluid viscosity. However, none of the above equations were theoretically developed from the fundamental 

equations of momentum and mass balance. This theoretical gap gave rise to a questioning about the mathematical 

formulation of the term that would be responsible for the emergence of non-linearities. Considering the inertial 

term, equation (1) becomes: 

∇𝑝 =  −𝜌𝑓𝒖(∇ ⋅ 𝒖) −
𝜇

𝑘
𝒖 + 𝜇∇2𝒖 (2) 

Where it is considered in this model that the term u(∇⋅u) is responsible for the non-linearity of the solution 

and that 𝜌𝑓 is the fluid density. Another way of simulating nonlinearity, quite common in recent articles on flow 

in porous media (Djoko and Razafimandimby (2012), Tsiberkin (2018), Juncu (2015)), is by omitting the inertial 

term and replacing it with the well-known Forchheimer term. This term arises from the attempt to represent a non-

linear flow by Forchheimer (1901), where the hydraulic gradient was expressed by the relation 𝐽 = 𝑎𝑢 + 𝑏𝑢2, for 

the one-dimensional case. For two-dimensional or three-dimensional cases, it is mathematically incoherent to raise 

a vector to any power, so to represent a non-linearity instead of 𝑢2, the notation 𝐽 = 𝑎𝒖 + 𝑏|𝒖|𝒖 is adopted. The 

Forchheimer term is considered in the literature as a term referring to the drag and friction forces between the fluid 

and the solid matrix. Inserting this relation in eq.(1), we obtain: 

∇𝑝 =  −𝐶|𝒖|𝒖 −
𝜇

𝑘
𝒖 + 𝜇∇2𝒖 (3) 

Where C is term referring to the drag coefficient. In the oldest literature, in the middle of the 20th century, 

authors tried to formulate the parameter C due to the tortuosity of the medium and the porosity, being an exclusive 

parameter of the geometry of the solid. 

It is notable that both terms reproduce the non-linearity of J x u, since in the very mathematical nature these 

terms are non-linear. However, authors suggest that these are equivalent. The researcher Nield in his work named 

“Limitations of the Brinkman-Forchheimer Equation in Modeling Flow in a Saturated Porous Medium and an 

Interface” (1991) even proposes that the use of the convective term 𝜌𝑓𝒖(∇ ⋅ 𝒖) is physically incorrect because 

within in a porous medium the fluid could not transport momentum in a neighborhood 𝜕/𝜕𝑥𝑖 as it could find a 

solid wall. Although pertinent, the comment can be contested since the momentum is carried only by the fluid and, 

when encountering an obstacle, the fluid changes its direction, consequently changing the direction to which the 

momentum will be carried, not necessarily canceling it. Other researchers claim that the term inertial is important 

for the study of flow instability since the Forchheimer term apparently does not make the differential equation 

unstable (Tsiberkin, 2018). 

The objective of this study is to understand and explain the equivalence of the terms exposed by eq.(2) and 

eq.(3), if it exists and, in which scenarios it can be considered true. This work will use tools from the theory of 

topological spaces of finite dimension, the modern theory of partial differential equations and asymptotic analysis 

of non-linear equations. 

2  Functional analysis of approximate solutions in finite-dimensional topological 

subspaces 

In engineering it is no longer common to solve differential equations in an analytical way due to the easy 

access to numerical analysis softwares. Even if one wants to solve these partial differential equations analytically, 

depending on the complexity of the domain, solutions may not exist. In this section, the so-called weak solutions 

of Brinkman's equations will be analyzed from the perspective of functional analysis. 

Take 𝑈 ⊂ ℝ and U = [0; 1] as the subspace of the line of the reals with infinite dimension where the PDE’s 

analytical solution lives. Now take 𝑆 ⊂ 𝑈, S = [0; 1] as a subspace of U but with a finite dimension. We assume 

that a weak solution 𝑢𝑠(𝑥) of eq.(2) and eq.(3) lives in S. Let eq.(2) be replaced by the value of the weak solution 

𝑢𝑠 in the formulation. The two sides of the equation are multiplied by a 𝑣(𝑥) belonging to the same subspace of 

𝑢𝑠 or some similar subspace. The two sides of eq.(2) are integrated across the domain to obtain: 
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𝜌𝑓∫𝑢𝑆
𝜕𝑢𝑆
𝜕𝑥
𝑣 𝑑𝑆

𝑆

= −∫𝑓′(𝑥)𝑣 𝑑𝑆
𝑆

−
𝜇

𝑘
∫𝑢𝑆𝑣 𝑑𝑆
𝑆

+ 𝜇∫
𝜕2𝑢𝑆
𝜕𝑥2

𝑣
𝑆

 𝑑𝑆 (4) 

Let the boundary conditions be 𝑢𝑠(0) = 1 and 𝑢𝑠(1) = 0. Applying the integration by parts in the last term 

to the right of equality and then applying the divergence theorem, it is rewritten as: 

𝜌𝑓∫𝑢𝑆
𝜕𝑢𝑆
𝜕𝑥
𝑣 𝑑𝑆

𝑆

= −∫𝑓′(𝑥)𝑣 𝑑𝑆
𝑆

−
𝜇

𝑘
∫𝑢𝑆𝑣 𝑑𝑆
𝑆

+ 𝜇∫
𝜕𝑢𝑆
𝜕𝑥
𝑣

𝜕𝑆

 𝑑Γ − 𝜇∫
𝜕𝑢𝑆
𝜕𝑥

𝜕𝑣

𝜕𝑥
 𝑑𝑆

𝑆

 (5. 𝑎) 

The third term on the right of equality disappears identically because the two boundary conditions are of the 

Dirichlet type, remaining: 

𝜌𝑓∫𝑢𝑆
𝜕𝑢𝑆
𝜕𝑥
𝑣 𝑑𝑆

𝑆

= −∫𝑓′(𝑥)𝑣 𝑑𝑆
𝑆

−
𝜇

𝑘
∫𝑢𝑆𝑣 𝑑𝑆
𝑆

− 𝜇∫
𝜕𝑢𝑆
𝜕𝑥

𝜕𝑣

𝜕𝑥
 𝑑𝑆

𝑆

 (5. 𝑏) 

It should be noted that the subspace where 𝑢𝑠 lives should only have the first derivative in relation to space 

and that this is Lebesgue-integrable. Suppose now that S is a closed subspace of U, complete and provided with a 

norm defined by an inner product. Let this norm also be defined such that as a norm in 𝐿𝑝  ∀ 1 ≤ 𝑝 < ∞. From 

these assumptions, it is admitted that S is a Banach space because it is complete, more specifically a Hilbert space 

because it has a norm in an inner product, and mainly, it is a Sobolev space because the norm applied to its 

derivatives is also Lebesgue-integrable . S is defined such that: 

𝑆 = {𝑢𝑆: ‖𝑢𝑆‖𝐿𝑝 < ∞ , ‖𝐷
𝛼𝑢𝑆‖𝑊𝑝1 < ∞ , ∀𝛼 ≤ 1,   𝑢𝑆(0) = 1 , 𝑢𝑆(1) = 0} (6) 

The derivative 𝐷𝛼𝑢𝑆 should not be interpreted in the classic sense of local differentiability, but rather as a 

weak derivative. The weak derivative is admitted existing in almost the entire domain, and may not exist in sets 

of measure zero (points). The definition of the norm in (19) is given by: 

‖𝑢𝑆‖𝐿𝑝 = (∫|𝑢𝑆|
𝑝 𝑑𝑆

𝑆

)

1

𝑝

 (7) 

And the Sobolev norm: 

‖𝐷𝛼𝑢𝑆‖𝑊𝑝1 = (∫ |
𝜕𝛼𝑢𝑆
𝜕𝑥𝛼

|

𝑝

 𝑑𝑆
𝑆

)

1

𝑝

, 𝛼 = 0,1… , 𝑛 (8) 

Here the solution norm and its derivatives have been separated, but the existence of a norm in Sobolev eq.(8) 

necessarily induces eq.(7). 

Let the inner product (scalar product) in 𝐿𝑝 and 𝑊𝑝
1 be defined by (⋅, ⋅). Again,  𝜌𝑓 = 𝜇 = 𝑘 = 1. Equation 

(5.b) becomes: 

(𝑢𝑠𝑢𝑠
′ , 𝑣) = (𝑓′, 𝑣) + (𝑢𝑆 , 𝑣) + (𝑢𝑆

′  , 𝑣′) (9. 𝑎) 

The 𝐿1 norm is applied to both sides of the equation. By the definition of the norm 𝐿1 in Sobolev spaces, 

(∫ |(𝑢𝑠, 𝑣) + (𝑢𝑠
′ , 𝑣)|1𝑑𝑥

𝑋
)
1

1 = ‖𝑢, 𝑣‖𝑊11 . Then one has:  

‖𝑢𝑠𝑢𝑠
′ , 𝑣‖𝐿1 = ‖𝑓

′, 𝑣‖𝐿1 + ‖𝑢, 𝑣‖𝑊11  (9. 𝑏) 

The term  (𝑓′, 𝑣) can be discarded from the analysis without loss of generality since f is not a function of 

𝑢𝑠(𝑥). Applying Schwarz’s inequality: 

‖𝑢𝑠𝑢𝑆
′‖𝐿2 ‖𝑣‖𝐿2 ≤ ‖𝑢‖𝑊21 ‖𝑣‖𝑊21 (9. 𝑐) 

Considering that all the norms in a space of finite dimension are equivalent to each other, it is possible to 

propose that ‖𝑣‖𝑊21 ≤ 𝛼‖𝑣‖𝐿2.. Simply put, you get: 

‖𝑢𝑠𝑢𝑆
′‖𝐿2 ≤ 𝛼‖𝑢𝑆‖𝑊21

𝐻ö𝑙𝑑𝑒𝑟
→    ‖𝑢𝑠‖𝐿𝑝  ‖𝑢𝑆

′‖𝐿𝑞 ≤ 𝛼‖𝑢𝑆‖𝑊21 (9. 𝑑) 

For 1 =
1

𝑝
+
1

𝑞
. The result in eq.(9.d) implies obvious and less trivial conclusions. The first conclusion that 

can be drawn from (9.d) is that the norm of the nonlinear term is smaller than the norm of the solution itself. It is 

also noted from eq.(9.d) that the non-linear term is coercive and limited, indicating continuity in the given space. 

This conclusion is obvious because it is customary to discard second order nonlinear terms as they are smaller than 

first order terms. However, it is noted that the norms in comparison are not defined in the same topological 
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subspace. The norm for the non-linear term is taken in 2-Lebesgue and the norm for the solution and its derivatives 

is taken in Sobolev. This comparison in different norms is known in the literature as Sobolev's inequality theorem 

(Brenner, 2008), which supports the well-known Sobolev’s embeddings (Ramanujan, 1997). This theorem allows 

us to reach the corollaries: 

i) 𝑢𝑠
′  and 𝑢𝑠 exist and are continuous, then 𝑢𝑠

′𝑢𝑠 exists and is continuous in 𝑆 ∈ 𝑊2
1(𝑈) . 

ii) There is a function equivalent to 𝑢𝑠𝑢𝑠
′  and it is of class 𝐶2. 

 

Applying the same reasoning in eq.(3), that is, the Brinkman equation with the Forchheimer term, we obtain 

the weak formulation: 

C∫(𝑢𝑆)
2𝑣 𝑑𝑆

𝑆

= −∫𝑓′(𝑥)𝑣 𝑑𝑆
𝑆

−
𝜇

𝑘
∫𝑢𝑆𝑣 𝑑𝑆
𝑆

− 𝜇∫
𝜕𝑢𝑆
𝜕𝑥

𝜕𝑣

𝜕𝑥
 𝑑𝑆

𝑆

 (10) 

Assuming 𝐶 = 𝜇 = 𝑘 = 1 and using the definition of internal products again, one obtains: 

(𝑢𝑠
2, 𝑣) = (𝑓′, 𝑣) + (𝑢𝑆 , 𝑣) + (𝑢𝑆

′  , 𝑣′) (11. 𝑎) 

The term (𝑓′, 𝑣) is ignored by the same arguments used previously, applying the 𝐿1 norm on both sides and 

using the Schwarz inequality: 

‖𝑢𝑠
2‖𝐿2 ‖𝑣‖𝐿2 ≤ ‖𝑢𝑆‖𝑊21  ‖𝑣‖𝑊21  (11. 𝑏) 

Where, after simplifications: 

‖𝑢𝑠
2‖𝐿2 ≤ 𝛼‖𝑢𝑆‖𝑊21 (11. 𝑐) 

By Sobolev's inequality theorem, the corollaries naturally appear: 

i) 𝑢𝑠 exists and is continuous, then 𝑢𝑠 ⋅ 𝑢𝑠 = 𝑢𝑠
2 exists and is continuous in 𝑊2

1(𝑈). 

ii) There is a function equivalent to 𝑢𝑆
2 of class 𝐶2. 

The two terms, inertial and Forchheimer, seem to be totally equivalent in relation to the topological space in 

which they live. Note, however, that in eq.(9.d) there is a restriction on the derivative of u and that this restriction 

is not imposed in eq.(11.c). The restriction in the derivative requires that this space to be a subspace of the less 

restricted space and therefore, the functionals applied to them would only be equal through a Hahn-Banach 

extension. The fundamental difference between the terms is then in their behavior when submitted to a linear 

operator belonging to the dual space of S, called 𝑆∗. Let be ℒ ∈ 𝑆∗  an operator such that it is coercive and limited. 

Let 𝑆ℒ be the space of the images of the terms of S submitted to ℒ . This space is also complete and closed. Let S 

be composed of Forchheimer's terms and of inertial terms, since it has been shown that they belong to the same 

bigger space, that is, 𝑆 = 𝑆𝐹𝑜𝑟𝑐ℎℎ𝑒𝑖𝑚𝑒𝑟  ⋂ 𝑆𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙.. The space of the images, resulting from the application of ℒ in 

S, can then be separated into a space where the images of the Forchheimer terms are and another where the inertial 

terms are. Let 𝑆ℒ𝐹𝑜𝑟𝑐ℎℎ𝑒𝑖𝑚𝑒𝑟  be the space of the images corresponding to the Forchheimer term and 𝑆ℒ𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙   be 

the space of the images corresponding to the inertial term. Then one has: 

𝑆ℒ𝐹𝑜𝑟𝑐ℎℎ𝑒𝑖𝑚𝑒𝑟  ∩ 𝑆ℒ𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙 = {∅} (12) 

This relationship indicates that the image subspaces resulting from the application of the linear operator in 

Forchheimer and inertial terms are separable. Two subspaces are separable when their terms are disjoint, that is, 

they do not share neighborhood. This abstract analysis can be better represented in Figure 4. 
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Figure 4. Representation of separable subspaces using a linear operator (author, 2020) 

Being 𝑆 ⊂ ℝ, it is known that the space of the images generated by any linear operator is represented by the 

axis of the ordinates in a Cartesian graph. The notion of abstract vector space becomes more understandable when 

the axis of the abscissa corresponds to space S and the axis of ordinates space 𝑆ℒ. As demonstrated, the images of 

the Forchheimer and inertial terms are separable, that is, they are not the same in almost the entire domain, and 

can be the same in different points that, for the purpose of topological analysis, do not indicate equivalence (for 

example, two distinct functions can intercept at more than one point and this does not indicate that these functions 

are identical). 

The corollaries induced by the results eq.(9.d) and eq.(11.c), state that for both formulations, there is a 𝐶2 
function that is equivalent to 𝑢𝑠(𝑥). A continuous, limited and 𝐶2 function within a Sobolev space, indicates that 

this function can be expanded in a Taylor series, depending on its derivatives. However, the derivatives used in 

the expansion do not have the classic sense, but the weak derivative sense. Let 𝑢𝑠(𝑥) be such that its expansion 

around any point y is: 

𝑢𝑆(𝑥) = 𝑢𝑠(𝑦) + 𝑢𝑆
′ (𝑦)|𝑥 − 𝑦| +

𝑢𝑆
′′(𝑦)|𝑥 − 𝑦|2

2
+ ⋯

𝑢𝑆
𝑛|𝑥 − 𝑦|𝑛

𝑛!
 (13. 𝑎) 

It is guaranteed that, because there is an equivalent function of class 𝐶2, the first and second derivatives are 

existing and continuous in S. Therefore, 𝑢𝑠(𝑥) can be represented by a second order polynomial within 𝑊2
1(𝑈). 

These Sobolev polynomials indicate that, when building a vector space to solve the Brinkman equation, assuming 

that S is complete and finite-dimensional, 𝑢𝑠(𝑥) admits the form: 

𝑢0𝜙0 +∑𝜙𝑖(𝑥)𝑢𝑖(𝑥)

𝑛

𝑖=1

= 𝑢𝑆(𝑥) (13. 𝑏) 

Where 𝜙𝑖(𝑥) spans the space. This result introduces that to solve the Brinkman equation with the 

Forchheimer term or the inertial term, the finite element formulation under Bubnov-Galerkin's theory must use 

interpolation functions that are polynomials of order of at least two and, for a isoparametric formulation, the same 

order is maintained for the shape functions. Therefore, linear elements with three nodes and Lagrange polynomials 

are adopted. The development of the finite element formulation is not within the scope of this work; however, it 

was carried out in view of all the mathematical foundations described so far. 

Both formulations were solved with the finite element tool, programmed in MatLab 2019. Nonlinearity was 

treated with the Newton’s method. The values of k and μ were kept constant, varying only 𝜌𝑓 to strengthen the 

nonlinearity of the inertial term and C to strengthen the nonlinearity of the Forchheimer term. The result was 

represented in Figure 5. 
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Figure 5. The inertial and Forchheimer formulations with increasing nonlinear term (author, 2020). 

It can be seen in Figure 5 that for moderate values of 𝜌𝑓 and 𝐶, in relation to the other coefficients in the 

PDE, the solutions are not identical, but they are quite similar. Both solutions respect the boundary conditions and 

have a smooth distribution within the domain, monotonically decreasing. For values in which 𝜌𝑓 and 𝐶 have an 

order of magnitude at least three times greater than the other coefficients, the solutions, despite respecting the 

boundary conditions, present different behaviors, including in relation to the concavity of the function. Note that 

the solution for the inertial term has a concavity facing downwards and the solution for the Forchheimer term has 

a concavity facing upwards. For extreme values of 𝜌𝑓 and C the behavior of the two solutions no longer seems to 

represent the same physical phenomenon. Note that for the concavity facing downwards, represented by the 

solution with the inertial term, it has a second positive derivative in almost the entire domain, indicating that the 

viscous term is positive in almost the entire domain, and therefore dissipative, as predicted by thermodynamics . 

The same cannot be said for the formulation provided with the Forchheimer term, since the upwards-facing 

concavity indicates that the system is not dissipating energy by viscous friction. However, Forchheimer's 

formulation is always stable due to purely mathematical reasons. 

3  Conclusion 

The analysis of the nature of Forchheimer's and inertial terms, showed that they have different meanings and 

importance within the momentum balance equation. For this reason, the two terms would not be equivalent.  

However, the topological analysis of the terms, which is deeper and more rigorous in the mathematical nature of 

each term, closes this work, emphasizing that the solutions are different for the formulation provided with the 

Forchheimer term or with the inertial term but that, for engineering purposes, with well-behaved and coherent 

values of fluid density and drag coefficient, both can accurately approximate the flow behavior. It can be noted, in 

Figure 2, that in the absence of nonlinear terms, or for limit values of nonlinear coefficients tending to zero, both 

solutions approximate Darcy's linear solution. The formulation with the Forchheimer term is then indicated for 

situations where it is necessary to calculate the drag force that the fluid exerts on solid grains, in linear or slightly 

non-linear regimes. For the study of strongly non-linear solutions and hydrodynamic instability, it is recommended 

the formulation with the inertial term. A formulation with both terms must be studied later. Analyzes in two and 

three-dimensional spaces are recommended to understand the differences between the solutions when structures 

such as vortexes or more complex boundary conditions are admitted in the problem. 
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