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Abstract. This paper aims to show, through three-dimensional numerical analysis on finite element method, the 

effect that the twin tunnel causes on the convergence profile considering several constitutive models of rockmass: 

elastic, elastoplastic and viscoplastic. The elastic and viscoelastic constitutive models for the lining are considered. 

For the viscoelastic constitutive model of the lining, the concrete creep and shrinkage are considered. For the case 

studied in this paper a difference in the magnitude of the convergence profile of up to 9% for the twin tunnel was 

observed, considering the rockmass and the lining with elastic behavior. For the other models, plastic rockmass 

with elastic lining, viscoplastic rockmass with elastic lining and viscoplastic rockmass with viscoelastic lining, 

minor differences were observed. Considering the viscoplastic rockmass, the presence of the viscoelastic lining 

increased the deformations by about 20% (at the end of tunnel construction) and by about 40% in the long-term 

behavior, in relation to the elastic lining. 
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1  Introduction 

The structural design of deep tunnels involves several geotechnical parameters. The field of strain and stresses 

around the cavity depends on several interrelated factors, such as the depth of the tunnel, the geometry of the cross 

section, the anisotropy of stresses in situ, the heterogeneity of the rockmass, the mechanical behavior of the 

rockmass and the lining as well as the interaction between both during the construction of the tunnel. Depending 

on the distance between the tunnels, the presence of the twin tunnel significantly affects the field of deformations 

and stresses within the rockmass. 

Several numerical analyzes between adjacent tunnels are in the literature, such as Addenbrook and Potts [1], 

Hefny et al. [2], Chakeri et al. [3], Ng et al. [4], Hage Chehade and Shahrour [5], Liu et al. [6], Do et al. [7], Fang 

et al. [8], Do et al. [9], Soga et al. [10], Yin-Fu et al. [11]. However, in these studies, there is no relationship of the 

long-term effect involving the creep and shrinkage of the concrete lining. Therefore, the objective of this paper is 

to present a study of the difference in the magnitude of the convergence profile in the long-term due to the presence 

of the twin tunnels considering creep and shrinkage of the concrete lining. This model implemented in the ANSYS 

is compared with other constitutive models of rockmass (elastic, elastoplastic and viscoplastic) and lining (elastic). 

2  Constitutive model of the rockmass 

The viscosity of the rockmass characterized by slow and continuous deformation, even under constant 

stresses, temperature, and humidity, is called creep. This phenomenon involves several physical mechanisms 

inside the rockmass, and most of these effects occur due to the redistribution of pore pressure and the advance of 

cracks and fissures. From a phenomenological point of view, this behavior can be characterized through creep 

tests. In this test, the samples extracted from the rockmass are subjected to a triaxial condition with stress, humidity, 

and temperature constant for a long time. Figure 1 show an example of this test with different constant stress state. 
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Figure 1. Boom clay creep test (Rousset [12]) 

For simulation of this phenomenon, Perzyna’s viscoplastic constitutive model is used with an associated flow 

rule deduced from von-Mises yield surface, a model that is already in the ANSYS. More details of this model are 

in Quevedo [13]. 

3  Constitutive model of lining 

The long-term effect of concrete is separated into creep and shrinkage. The main difference between both is 

that creep depends on the stress history, while shrinkage does not. Figure 2 shows the behavior of concrete about 

each of these phenomena. 

 

Figure 2. (a) typical shrinkage curve of concrete, (b) typical creep curve of concrete (MINDESS et al. [14]) 

To simulate this phenomenon, a viscoelastic model was implemented in ANSYS using the USERMAT 

customization feature. The shrinkage is given by the CEB-MC90 formulation [15] and the creep part is modeled 

through a Kelvin-Generalized chain, according to the Solidification Theory of Bazant and Prasannan [16,17], 

whose parameters are adjusted with the CEB-MC90 formulation. More details of this model are in Quevedo [13] 

and Quevedo et al. [18]. 

4  Spatial and temporal discretization 

For the spatial discretization of the domain, a mesh with 67300 three-dimensional SOLID185 elements is 

used, totaling 67796 nodes. Figure 3 shows the mesh, geometric parameters and boundary conditions. The double 
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symmetry is considered. The advance of the excavation and placement of the lining is simulated by activating and 

deactivating of the finite elements. The time step used during the solution process is 0.02 days during each 

excavation time / 1.667TESC p V days  , and three days between the final time of construction of the tunnel, 

39 / 65TCONST p V days   and the final time of the analysis 7.5TFINAL years . This final time corresponds 

to the characteristic time of concrete creep-shrinkage curve, which corresponds to 84% for the 50-year total 

deformation of concrete with strength and rheological characteristics of the Tab. 1. 

 

Figure 3. Mesh, geometric parameters and boundary conditions for twin tunnels 
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5  Verification of the models 

To verify the concrete constitutive model, the numerical solution is compared with the results of the analytical 

formulation of CEB-MC90 applied on Ross’s experimental data [19]. Figure 4 shows two comparisons for creep 

considering 38ckf MPa , 0.2s  , 0.15  , 93%RH  , 3.93939fh cm , 7st days , 8esc  , 17T C  , 

1  . The definition of each constitutive parameters is shown in Tab. 1. More verifications are in Quevedo [13]. 

 

Figure 4. Examples of verification of the concrete constitutive model 

The verification of the models of the rockmass as well as the study of mesh convergence were made through 

comparisons with analytical solutions in elasticity and elastoplasticity considering only one tunnel. The mesh is 

similar of Fig. 3 and can be found in Quevedo [13]. The verification was also made for cases involving the elastic 

lining and viscoplastic rockmass with numerical solutions in axisymmetry obtained by the GEOMEC91 software 

[20]. The results obtained by GEOMEC91 are based on the Bingham’s model for rockmass viscosity, according 

to Zienckievicz and Cormeau [21], while the calculations of ANSYS are based on the Perzyna’s model [22]. 

However, the models are equivalent, and their parameters can be related as shown in [13]. 

Figure 5 and Fig. 6 shows some results of these comparisons considering 100iR cm , 10e cm , 1/ 3 ip R ,

4p MPa  , 0.86602C MPa and 2.59806C MPa , 10 /V m day , 0 2 / 3 id R , [300,3000,30000]rE MPa . 

The definition of each constitutive parameters is shown in Tab. 1. 

Figure 5. Examples of verification of the tunnel models in elastoplasticity without/with elastic lining 
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Figure 6. Examples of verification of the tunnel models in viscoplasticity without/with elastic lining 

6  Results 

For the analysis the following geometric parameters are used: 500iR cm , 20e cm , 0 0d cm , 1 4 id R

1/ 3 ip R . In the boundary conditions, a geostatic hydrostatic pressure 5p MPa   and an advanced speed 

1 /V m day  is used. The Table 1 shows the values of the constitutive parameters used. 

Table 1. Constitutive parameters used in the analyzes 

PARAMETERS SYMBOL UNIT VALUES 

CONSTITUTIVE MODEL OF ROCKMASS 

Young’s module sE  MPa 1000 

Poisson’s ratio s  adm 0.4 

Cohesion (von-Mises’ criterion) C  MPa 0.86602 

Viscosity coefficient (GEOMEC91)   day 94.50 

Power law parameter (GEOMEC91) n  adm 1 

Reference parameter (GEOMEC91) 0F  MPa 1 

Material viscosity parameter (ANSYS)   1/day 0.01832 

Strain rate hardening parameter (ANSYS) m  adm 1 

CONSTITUTIVE MODEL OF LINING 

Characteristic compressive strength of concrete ckf  MPa 20 

Young’s module of concrete rE  MPa 30303.4 

Poisson’s ratio r  adm 0.2 

Coefficient which depends on concrete type s  adm 0.2 

Relative humidity of ambient environmental RH  % 70 

Fictitious thickness 
fh  cm 40.83 

Age at the beginning of shrinkage st  day 7 

Coefficient which depends on concrete type - shrinkage sc  adm 8 

Temperature T  °C 

C 

20 

Coefficient which depends on concrete type   adm 1 

Age at which the load was applied 0t  day 1 
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In Tab. 1, the parameters of the Bingham’s and Perzyna’s models for rockmass are shown. The viscoelastic lining 

has 20ckf MPa , with high initial strength characteristics cured for 7 days (as if it were shotcrete). Figure 7 

shows the results. The convergence profiles at the top of the cross section 90U are presented for the case of one 

tunnel 1d    (dotted line), and for the case of twin tunnels with a distance between axes of the cross section 

1 4 id R  (continuous line). The equilibrium convergence 90eqU  is the convergence average between / 22iz R   

and / 26iz R  . For viscous cases, the solution is presented in the final time of the tunnel construction (TCONST) 

and in the final time of the analysis (TFINAL). 

 

Figure 7. Results of the analyses 

7  Conclusions 

Comparing the equilibrium convergences of Fig. 7, some conclusions can be listed: 

 

a) the difference caused by the presence of the twin tunnel was 9% for the elastic rockmass with elastic 

lining; 8% for the elastoplastic rockmass with elastic lining, 7% for viscoplastic rockmass with elastic 

lining and 4% for the viscoplastic rockmass with viscoelastic lining. 

b) in the viscoplastic rockmass, in comparison with the elastic lining, the viscoelastic lining increases 

deformations by about 20% at the end of the tunnel construction (TCONST) and about 40% at the end 

0.00

0.30

0.60

0.90

1.20

1.50

12 14 16 18 20 22 24 26 28

U
9

0
=

 -
u
(r

=
R

i;
 θ

=
9
0
)/

R
i
(%

)

z/Ri

ELASTIC ROCKMASS WITH ELASTIC 

LINING

d1 = ∞: Ueq90 =0.435

d1 = 4Ri: Ueq90 =0.476

0.00

0.30

0.60

0.90

1.20

1.50

12 14 16 18 20 22 24 26 28
U

9
0

=
 -

u
(r

=
R

i;
 θ

=
9
0
)/

R
i
(%

)

z/Ri

ELASTOPLASTIC ROCKMASS WITH 

ELASTIC LINING

d1 = ∞: Ueq90 =0.921

d1 = 4Ri: Ueq90 =0.993

0.00

0.30

0.60

0.90

1.20

1.50

12 14 16 18 20 22 24 26 28

U
9

0
=

 -
u
(r

=
R

i;
 θ

=
9
0
)/

R
i
(%

)

z/Ri

VISCOPLASTIC ROCKMASS WITH 

ELASTIC LINING

d1 = ∞; TCONST: Ueq90 =0.92

d1 = ∞; TFINAL: Ueq90 =0.92

d1 = 4Ri; TCONST: Ueq90 =0.982

d1 = 4Ri; TFINAL: Ueq90 =0.982

0.00

0.30

0.60

0.90

1.20

1.50

12 14 16 18 20 22 24 26 28

U
9

0
=

-u
(r

=
R

i;
 θ

=
9
0
)/

R
i
(%

)

z/Ri

VISCOPLASTIC ROCKMASS WITH 

VISCOELASTIC LINING

d1 = ∞; TCONST: Ueq90 =1.14
d1 = ∞; TFINAL: Ueq90 =1.301
d1 = 4Ri; TCONST: Ueq90 =1.164
d1 = 4Ri; TFINAL: Ueq90 =1.348



F. P. M. Quevedo, D. Bernaud, A. Campos Filho 

CILAMCE 2020 

Proceedings of the XLI Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC 

Foz do Iguaçu/PR, Brazil, November 16-19, 2020 

 

of the analysis (TFINAL). 

c) the consideration of the viscoelastic lining is more significant in the magnitude of the deformations than 

the proximity of the twin tunnels: the elastic lining block the viscous deformation of the rockmass, which 

did not happen with the viscoelastic lining. 
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