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Abstract. Mechanical structures are subjected to cyclical stresses and collapse under fatigue conditions. There 

are several mathematical models that describe the crack propagation. In general, crack propagation models are 

classified by the type of loading, which can have constant stress amplitude or variable stress amplitude. In this 

work, the constant stress amplitude model proposed by Collipriest will be explored. For many engineering 

applications a reliable estimate of crack behavior is required. Therefore, this work presents theoretical results, 

which consist of the quantification of uncertainty in the definition parameters in the model used, based on lower 

and upper bounds, which envelop the estimators of the first and second order statistical moments of the function 

size of crack, based on the Fast Crack Bounds method. These dimensions are polynomials, defined in the 

variable number of cycles, which take into account the uncertainties in the parameters that describe the crack 

propagation models. The Monte Carlo simulation method will be used to obtain the realizations of the crack size 

function from a set of random samples of the characteristic parameters of the Collipriest model. These 

achievements will be used to obtain the estimators of statistical moments of crack size. The efficiency of the 

bounds for the estimators of the statistical moments of the crack size is evaluated through relative deviation 

functions between the bounds and the approximate numerical solutions of the initial value problem that describes 

the Collipriest model. In general, the solution of the initial value problem that the crack propagation models 

describe is obtained through the use of numerical methods, such as the explicit fourth order Runge-Kutta 

method. In this work, a mathematical software will be used for numerical analysis of the solutions of the crack 

propagation model of the Collipriest model, therefore an analysis of the computational performance between the 

Fast Crack Bounds and Runge-Kutta methods and presented by the computational time, graphs and tables. 
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1  Introduction 

The objective of this work is to quantify the uncertainty of the crack size function of the Collipriest model, 
according to the Fast Crack Bounds - Monte Carlo methodology (FCB-MC) and based on the crack propagation 
regime in constant amplitude. An uncertainty quantification consists of using the FCB method, together with the 
Monte-Carlo simulation method. From this, numerical bounds are obtained for estimators the statistical moments 
of the stochastic process crack size of the Collipriest random model, applications for engineering problems. The 
estimates resulting of the statistical moments will be compared with the approximate solutions using the fourth 
order Runge Kutta - Monte Carlo (RK4 - MC) methodology. The performance of the FCB - MC methodology, in 
the quantification of the uncertainty of the Collipriest model and evaluated through computational performance 
measures. These measures are defined from the computation times, upper and lower dimensions and crack size 
function obtained by the method RK4 - MC. 
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2  Collipriest model 

Collipriest [1] proposed a crack growth law and describing all the regions in Fig. 1. Based on this law, the 
propagation of a crack of the Collipriest model is formulated according to eq. (1), using the solution of the 
following the initial value problem (IPV).  
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        Where C and m are the material parameters for the Collipriest model. This model performs, with accuracy, 
the effects of the stress ratio R in the crack propagation regions. The main characteristic of the Collipriest model 
is that it represents the crack propagation regions I, II and III and considering the average stress, by the stress 
ratio. 

 

 

Figure 1. Sigmoid diagram da/dN.  

3  Fast Crack Bounds – Monte Carlo methodology 

The Fast Crack Bounds (FCB-MC) methodology consists of efficiently finding two functions that define 
upper and lower bounds for the crack size function of any crack propagation law. The computational cost of the 
FCB method is often less than that required by numerical integration with the fourth order Runge Kutta method, 
according to Ávila [2] and Machado [3]. In this work, the numerical results show that the bounds represent, 
satisfactorily, the crack evolution. The lower and upper bounds of the crack size function must satisfy the 
following inequalities, according to eq. 2. 

     a N a N a N N N N,      ,0 1
       (2) 

The FCB-MC methodology, starting from hypotheses and adequate analyzes of the representation by the 
Taylor series and retaining the second order term, with Lagrange's rest, obtains functions which results in lower 
and upper bounds for the crack size function for some law of crack propagation, according to eq. 3. 
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Where *a βa0  , and β  equal to coefficient and “N” the quantity of cycles. 

3.1 Fast Crack Bounds method applied to the Collipriest model 

The mathematical formulation consists of determining the equations that represent the upper and lower 
bounds of the Collipriest crack propagation model using the FCB-MC methodology. Starting from the 
Collipriest eq. 1 and by the integration of the Taylor series with the Lagrange rest in eq. 3, considering 
hypotheses i, ii, iii and iv, consequently the eq. 4. 
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From eq.4 it is possible to find the upper and lower bounds. For the upper bound, mathematical inequality 

  and  K a0Δ is changed. However, for the lower bound, inequality   and  *K aΔ  is changed. Therefore, the 

equations of the lower and upper bounds for the FCB-MC methodology of the Collipriest model are found. 
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4  Runge Kutta – Monte Carlo methodology 

The Runge Kutta - Monte Carlo methodology (RK4-MC) is used to find an estimate of the statistical 
moments of the “crack size” stochastic process, using the fourth order Runge Kutta method. To obtain the 
estimators of the statistical moments, random samples are generated for each parameter with uncertainty. To 
evaluate the performance of the methodology, relative deviation functions are defined for the first and second 
statistical moments of the upper and lower bounds, considering to the statistical moments of the numerical 
solution, obtained through the RK4-MC methodology. In Avila and Santos [2] crack propagation is evaluated by 
the stochastic method associated with the RK4-MC methodology. Thus for the i-th sample of the parameters, the 
approximate numerical solution of the process is given by eq. 5 implemented for the Collipriest model. 
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4.1 Modeling the uncertainty of the Collipriest random variables 

The modeling of the Collipriest uncertainty is performed based on the random variables of the parameters 

C, m, a0 , thKΔ  and cK  from model, based on the FCB-MC methodology and RK4-MC methodology, 

according to eq. 6. The random variables are uniform distribution and the generated values have the same 
probability of occurrence in the events, according to Machado [4]. Random variables are characterized as 
uniform and with statistical independence. 
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Where  th cμc ,μm ,μa ,μ K ,μK0 Δ and  th cδc ,δm ,δa ,δ K ,δK0 Δ  are the expected values. The random 

variables are represented by nξ , uniform in U [-1,1] and statistically independent. The dispersion coefficient of 

c cδ / μ1 10  and c cδ / μ3 10  used to represent the value of the uncertainty variable. 

4.2 Numerical and computational implementation 

The RK4-MC and FCB-MC methodologies are applied to the Collipriest model. From the respective 
mathematical formulations in eq. 4 and eq. 6 algorithms were developed and implemented in matlab. To evaluate 
the implemented methods and algorithms, tests were performed with problems whose solution is known and 
described in the chapter results. The algorithm implemented to obtain the fourth order Runge Kutta numerical 
solution has a greater computational effort in solving the main function of ordinary differential equation, 
according to Burden and Faires [5], this influences the computational performance and consequently the results 
of this work. As part of the results there is an analysis of the computational times of the methodologies using an 
intel core i5 computer hardware and 8 Gb RAM. 

5  Numerical results 

The results are based on the numerical values obtained of the RK4-MC and FCB-MC methodology. The 
upper and lower bounds are calculated according to the estimates of the statistical moments of the crack size 
function of the Collipriest model. The numerical solutions, the relative deviations between the bounds of the 
statistical moments, are associated to the functions of the stress intensity factor (SIF) of the metal plates 
requested by tension, and presenting surface crack. As part of the numerical result, there is an analysis of the 
computational times of the methodologies, according to the software and hardware mentioned above. 

Classical deterministic examples are used to evaluate the performance of the dimensions, such as: infinite 
plate with central crack, finite plate with a central crack and finite plate with edge crack. The parameters of the 
plate material are the same as those used in Rubaie's works [6]. These parameters are described in Tab. 1 and 
belong to the Inconel 600 alloy. 

Table 1. Inputs parameters of metal plate – alloy 600 steel 

Parameters  Numerical value 
Random variable σΔ  65 Mpa 
Plate thickness b 100 mm 
Stress ratio R 0,1 mm 
Initial cycle N0 0 cycles 
Final cycle N1  900000 cycles 
Initial crack length a0  2,5 mm 
Random variable c 5,61.10-12 

Random variable m 2,62 
Random variable Kc 40,08 MPa.m1/2 

Random variable thKΔ  6,38 MPa.m1/2 

 
 
The numerical results of the FCB-MC and RK4-MC methodologies are show in graphs for the three types 

of deterministic examples. The first example is an infinite width plate with a central crack in Fig.2, the second 
example is a finite plate with a central crack in Fig. 3 and the third example is a finite plate with an edge crack in 
Fig.4. These examples have a correction factor, according to Peterson [7], whose functions are indicated in the 
figures. The material that constitutes these plates is an alloy of Inconel 600, whose parameters are shown in Tab. 
1. Through these input data it was possible to measure the performance of both methodologies, looking for 
parameters of the first statistical moment of the stochastic crack size process. This performance can be evaluated 
according to the numerical values presented through graphs in Fig. 2, Fig. 3 and Fig. 4, and by the computational 
time for the random parameters of the Collipriest model, according to Tab. 2. 20000 simulations are carried out 
for each sample from 0 to 900000 cycles. 

In the classic and deterministic example infinite plate with central crack and random parameter crack length 

a0, according to Fig. 2, with dispersion coefficient in 1/10 and *a / a01 10  , it is observed that the randomized 
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parameters enveloped the numerical solution and complying with the inequality shown in eq. 2. That is, the 

bounds aμ̂ and aμ̂ envelop the numerical solution aμ̂ . This situation shows the behavior of the FCB-MC 

methodology in quantifying the uncertainty of the random variable crack size a0 of the Collipriest model. 
The computational times are measured for each methodology and compared to each other, according to 

Tab. 2. Note that the execution time of the FCB-MC methodology algorithm in relation to the RK4-MC is in the 
order of 3700% faster.  

Table 2. Computational time performance – FCB-MC versus RK4-MC methodologies 

Methodology Infinite plate 
 central crack 

Finite plate  
 central crack 

Finite plate  
 side crack 

RK4-MC 751,5 s 829,9 s 870,8 s 
FCB-MC 20,4 s 46,4 s 26,7 s 
rate ( %)  3700 % 1800 % 3300 % 

 

 

Figure 2. Results of  RK4-MC vs. FCB-MC bounds - random parameter a0. 

In the classic and deterministic example finite plate with central crack and random parameter crack length 

a0, shown in Fig. 3, using dispersion coefficient of 1/10, *a / a01 10 , all randomized parameters enveloped the 

numerical solution complying with the inequality shown in eq. 2. That is, the bounds  aμ̂  e aμ̂  envelop the 

numerical solution aμ̂  . The computational execution time is approximately 1800% faster, according to Tab.2. 

 

Figure 3. Results of  RK4-MC vs. FCB-MC bounds - random parameter a0. 
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In the classic and deterministic example finite plate with side crack with random parameter crack length a0, 

show in Fig. 3, with dispersion coefficient in 1/10, *a / a01 10 , and all randomized parameters enveloped the 

numerical solution complying with the inequality shown in eq. 2. The computational execution time is 
approximately 3300 % faster, according to Tab.2. 

 

Figure 4. Results of  RK4-MC vs. FCB-MC bounds - random parameter a0. 

6  Conclusions 

The methodology used to quantify uncertainty uses, together, the Fast Crack Bounds and Monte Carlo 
simulation methods. Checking the obtained results, according to Tab. 2, it was possible to verify how efficient 
the FCB-MC methodology is good for the evaluation of a given crack size function. This efficiency was 
measured through the computational times and the numerical results of the bounds in the statistics first moment, 
shown as a graph in the chapter results. Efficiency was observed for the three deterministic examples analyzed. 
This means the FCB-MC methodology has a good performance, faster and requires less computational effort in 
mathematical solution compared to the RK4-MC methodology. 
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