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Abstract. One of the main objectives of structural engineering has been to make the structures slenderer and more 

economical, reducing their weight and the consumption of materials without, however, compromising their 

stability. The increase in the slenderness of the structural elements makes them more susceptible to large lateral 

displacements before their rupture occurs. The stability analysis of slender structural systems currently involves 

the application of the Finite Element Method (FEM). As a consequence, a system of non-linear algebraic equations 

is generated and its solution is obtained, in general, through incremental-iterative procedures. This article initially 

presents structural single-degree-of-freedom systems (SDF, scalar variables), subjected to geometric nonlinear 

behavior, showing their analytical and numerical solutions, using the Principle of Stationary Total Potential 

Energy. Four SDF systems, with different behaviors, are presented: stable or unstable post-critical behavior and 

with and without bifurcation. Geometric imperfections are incorporated. The work ends with the presentation of 

two-degree-of-freedom systems, where the variables become matrix and vector, expanding the concepts of SDF 

systems for the multi-degree-of-freedom (MDF) ones. 
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1  Introduction 

Creating the most economic structures through reduction of material consumption and overall weight without 

loss of safety and durability has been the main objective of structural engineering. 

Weight reduction has been achieved in concrete structures, by increased use of high-strength concrete 

(generally greater than 20 𝑀𝑃𝑎), especially those with resistances greater than 50 𝑀𝑃𝑎, and steel structures with 

resistances exceeding 250 𝑀𝑃𝑎. Associated with the use of refined analysis and more accessible and powerful 

computers, this has led to bolder projects with thinner structural elements. Consequently, compressed structural 

elements are more susceptible to large lateral deflection, increasing the possibility of loss of stability, demanding 

nonlinear analysis. This phenomenon is analyzed with adequate depth in the theory of elastic stability, as Ferreira 

[1] proposed in recent researches. This work aims to present concepts and terminology relevant to the loss of 

stability of structural systems which are often not approached with adequate depth in the solid mechanics books at 

undergraduate civil engineering and mechanical engineering courses. 

2  Concepts of stability 

The stability of equilibrium is a basic concept of rigid body mechanics, which can be easily viewed and 

intuitively assimilated through the classic problem of spherical mass lying in straight or curved surfaces, as Fig. 1 

illustrates. 
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Figure 1. Spherical masses in static equilibrium 

The points where the masses 𝑀1, 𝑀2 and 𝑀3 rest have zero slope and represent points of static equilibrium, 

however, the type of equilibrium achieved at each of these points is essentially different. If the mass 𝑀1 undergoes 

a small external disturbance, when the cause of trouble is removed it returns to the starting equilibrium position. 

In this case, the original position is considered a stable equilibrium state. It is observed that in this case, the center 

of gravity rises, thus increasing the potential energy of the system (𝛥𝛱 >  0). For mass 𝑀2, unlike what happened 

with mass 𝑀1, the original position is an unstable equilibrium state, because after a small disturbance, the static 

forces acting upon the system tend to displace the ball away from the equilibrium position. In this case there was 

a lowering of the center of gravity and, consequently, a decrease in the potential energy of the system (𝛥𝛱 < 0). 

In the third case, when the weight rests on a flat surface, the system is referred as being in a state of neutral stability 

(or state of indifferent stability), i.e., in any position the ball remains in equilibrium. Here the center of gravity of 

the ball remains at the same level, and therefore no variation in the potential energy occurs (𝛥𝛱 =  0, Ferreira 

[1]). To study the stability of structural systems, three criteria can be used. The static criterion of stability, which 

examines the equilibrium of forces, the energy criterion of stability, which examines the variation of the total 

potential energy, and the dynamic criterion of stability, based upon concepts from vibration theory. 

The loss of stability is a nonlinear phenomenon. Therefore, to understand accurately, the behavior of the 

system under this effect, one has to use nonlinear analysis. When analyzing the stability of a structural system, a 

set of control parameters is used. To understand the overall behavior of the system and identify the possible 

instability phenomena, the variations of the equilibrium position with respect to changes in each control parameter 

have to be studied. Thus, the so-called equilibrium paths are obtained. Along these paths, the equilibrium 

configurations may be qualitative changes with regard to their stability. According to Silveira [2], the border points 

are called critical points, that which can be of two types: bifurcation points or limit points. 

3  Stable-symmetric bifurcation system 

3.1 Analytical nonlinear solution 

In real cases, the structures often have imperfections: there are no perfectly straight bars. Thus, such 

imperfection is simulated by means of an initial angular deflection φ0 in the bar, with respect to its vertical 

position, as Fig. 2 indicates. 

Figure 2. System showing a no weight rigid bar with imperfections and circular  spring 
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The total potential energy (𝛱) depends on the angular displacement (𝜑). For 𝜑 = 0 and φ0 = 0, which 

corresponds to the vertical bar (original equilibrium position), the solution generates a graph at the coordinates 

𝐹𝐿 ⁄ 𝑘 ×  𝜑 called the fundamental path. For 𝐹 = 𝑘𝜑 ⁄ 𝐿𝑠𝑖𝑛𝜑, the solution is called post-critical, and its graph 

at coordinates 𝐹𝐿 ⁄ 𝑘 ×  𝜑 called secondary equilibrium path or post-critical path, as shown on Tab. 1.  

Table 1. Stability study 

Solution: φ = 0 Solution: 𝐹 =
𝑘φ

𝐿𝑠𝑖𝑛φ
 

𝑑2Π

𝑑φ2
= 𝑘 − 𝐹𝐿 

𝑑2Π

𝑑φ2
= 𝑘(1 − φcotgφ) 

𝑘 − 𝐹𝐿 > 0 or 𝐹 < 𝑘/𝐿 𝑘 − 𝐹𝐿 < 0 or 𝐹 > 𝑘/𝐿 For |φ| < 𝜋, 
𝑑2Π

𝑑φ2 ≥ 0 

Stable equilibrium Unstable equilibrium Stable equilibrium 

Fundamental path Fundamental path Post-critical path 

 

Table 2 shows the equations for the potential energy of elastic spring, the potential of 𝐹 and the total potential 

energy (П = 𝑈 + 𝑉). 

Table 2. Total potential energy on system with imperfections 

Potential energy of elastic 

spring 
Potential of load F Total potential energy 

𝑈 =
(φ − φ0)2

2
 𝑉 = 𝐹𝐿(𝑐𝑜𝑠φ − cosφ0) Π =

(φ − φ0)2

2
+ 𝐹𝐿(𝑐𝑜𝑠φ − cosφ0) 

 

For the energy criterion of stability, the system is in equilibrium (stable, unstable or indifferent) when the 

equation 𝑑𝛱/𝑑𝜑 = 0 is satisfied, or when: 

𝑘(φ − φ0) − 𝐹𝐿𝑠𝑖𝑛φ = 0 (1) 

 

This equation shows that 𝜑 =  0 is no longer the problem solution. Isolating 𝐹 in eq. (1),  

 

𝐹 =
𝑘(φ − φ

0
)

𝐿𝑠𝑖𝑛φ
 (2) 

 

Figure 3 shows the critical paths of the imperfect system illustrated in Fig. 2, along with the those of the 

perfect system. 

Figure 3. Nonlinear solution of system with imperfections and circular  spring 

It is observed that there is no bifurcation, the solutions of the nonlinear imperfect system bordering the 

solutions of the perfect system (there is an asymptotic approximation). The paths above the perfect system curve 

are called complementary equilibrium paths, as said by Croll and Walker [3], and can only be achieved in dynamic 

problems. This example presented the equations for the total potential energy and the equations resulting from 
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applying the energy criterion of stability. 

 The formulation of ABNT NBR 14762:2010 [4] for cold formed profile considers the use of the post-critical 

behavior of plates, which make up the steel profile (Fig. 4), for the calculation of the column's resistant capacity. 

Figure 4. Post-critical behavior of a cold formed profile 

3.2 Numerical nonlinear solution using Newton-Raphson procedure 

The numerical solution is performed by an iterative process involving two stages. The first step involves the 

incremental offsets from a given load increase, where unbalanced forces appear. The second stage is a correction 

process, by searching the equilibrium of forces, from a convergence criterion, until 

 

𝐹𝑖𝑛𝑡 − 𝐹𝑒𝑥𝑡 ≅ 0 (3) 

 

Where 𝐹𝑖𝑛𝑡 is the internal force, a function of displacement, and 𝐹𝑒𝑥𝑡  is the external force.  

Now, the nonlinear problem of the mechanic system illustrated in Fig. 2 can be solved, through 

this procedure, where 𝐹𝑖𝑛𝑡 = 𝐾(φ − φ0), 𝐹𝑒𝑥𝑡 = 𝑃𝐿𝑠𝑖𝑛φ and  𝐹𝑖𝑛𝑡 − 𝐹𝑒𝑥𝑡  is the unbalanced force. The following 

methodology described in Tab. 3, used in this study, is based primarily on the iterative-incremental solution 

of Eq. (3). 

Table 3. Solution strategy nonlinear through the Standard Newton-Raphson method  

1. Initial configuration: 𝜑0 

2. Incremental iterative loop (external loop) 

Increases 𝐹 

3. Iterative cycle (internal loop, Newton-Raphson iteration) 

a. It calculates the second differential of 𝛱 

b. It calculates the unbalanced load vector 𝐹𝑖𝑛𝑡 − 𝐹𝑒𝑥𝑡  (first differential of 𝛱) 

c. It checks the convergence: 𝐹𝑖𝑛𝑡 − 𝐹𝑒𝑥𝑡 < 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 

      If true, it returns to item 2 

d. If false, it updates displacement (𝜑) 

           𝜑 =  𝜑 − (𝑑𝛱/𝑑𝜑)/(𝑑²𝛱/𝑑𝜑 ²) 

            It returns to item 3 

4  Unstable-symmetric bifurcation system  

Figure 5 shows a system consisting of a vertical bar with compression load 𝐹 at the upper end associated to a 

linear spring of stiffness 𝐾. 
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Figure 5. Rigid bar with linear spring 

The analysis of this system shows that: for 𝐹 < 𝐾𝐿, the equilibrium is stable, but when 𝐹 > 𝐾𝐿, the path is 

the postcritical and it is always unstable, with symmetric bifurcation. This case is known as unstable-symmetric 

bifurcation system, according to Allen and Bulson [5]. The imperfections in this system are treated similarly to the 

case of the rigid bar with circular spring (Fig. 2). Figure 6 shows this behavior.  

                  (a)                                                         (b) 

Figure 6. Nonlinear solution of the system of with imperfections and variation of limit load 

In this system, is verified that starting from 𝐹 = 0 (when 𝜑0  >  0), the critical path is stable until it reaches 

a maximum value represented by 𝐹𝐿, from which it becomes unstable. The load is called buckling load or limit 

load of the imperfect structure and the corresponding point is called a limit point (limit load point). From the limit 

point there is instability with the strains growing indefinitely (Fig. 6 (a)). This process of loss of stability is called 

dynamic jump. As it increases 𝜑0 imperfection of the system, the limit load becomes lower (Fig. 6 (b)). Figure 7 

shows a practical example with behavior similar to that shown in Fig. 6 (see Gonçalves and Batista [6]). 

Figure 7. Stiffened cylinder under compression 
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5  System with no bifurcation 

The structure shown in Fig. 8(a) consisting of two rigid bars freely hinged to each other and with two 

supports: support C attached to a linear spring of stiffness 𝐾. Both bars have initial 𝜑0 slope.  

 

 

(a)                                                      (b) 

Figure 8. System with no bifurcation 

Comments will be made only for 𝜑 > 0. By increasing load 𝐹 from zero, the angle 𝜑, which for the system 

without loading is 𝜑0, will decrease until it reaches a critical point 𝜑𝑐𝑟 . An infinitesimal increment greater than 

this value there will be a sudden change in system configuration, passing the configuration I to configuration II 

(Fig. 8(b)). This abrupt configuration changing is called a dynamic jump. 

6  Systems with multiple degrees of freedom 

In this study, using the energy criterion of stability, a structural model with two degrees of freedom, 

consisting of three weightless rigid bars (length 𝐿 each). The bars are freely hinged to each other . At the lower 

end there is a pinned support and at the top a roller support. The model is supported by two linear springs 

with stiffness 𝐾 and it is subject to a compressive vertical load. All concepts that were seen for systems with single 

degree of freedom are valid for systems with multiple degrees of freedom. Thus, only a compact representation of 

this system of equations for two degrees of freedom, as represented on Fig. 9, will be presented. 

 

 

 

 

 

Figure 9. Proposed structure for analysis and configuration mechanism after it loses stability 

For structural system shown, Eq. (4) defines the potential energy from values 𝑥1, 𝑥2 and ∆, as follows 

𝑈(φ1, φ2) =
𝑘𝑥1

2

2
+

𝑘𝑥2
2

2
 (4) 

 

𝑉(φ1, φ2) = −𝐹∆ (5) 

x1 

x2 
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Thus, as in Souza [7], 

 

Π(φ1, φ2) =
𝑘𝐿2

2
(𝑠𝑖𝑛2φ1 + 𝑠𝑖𝑛2φ2) − 𝐹𝐿 [3 − 𝑐𝑜𝑠φ1 − 𝑐𝑜𝑠φ2 − √1 − (𝑠𝑖𝑛φ1 − 𝑠𝑖𝑛φ2)2] (6) 

 

Now, using the Principle of Stationary Potential Energy11, the pair of equations of nonlinear equilibrium 

becomes: 

𝑑Π(φ1, φ2)

𝑑φ1

= 0 (7) 

Thus, 

𝑘𝐿2𝑠𝑖𝑛φ1𝑐𝑜𝑠φ1 − 𝐹𝐿 [𝑠𝑖𝑛φ1 +
(𝑠𝑖𝑛φ1 − 𝑠𝑖𝑛φ2)𝑐𝑜𝑠φ1

1 − (𝑠𝑖𝑛φ1 − 𝑠𝑖𝑛φ2)2
] = 0 (8) 

 

And    

𝑑Π(φ1, φ2)

𝑑φ2

= 0 (9) 

Thus, 

𝑘𝐿2𝑠𝑖𝑛φ2𝑐𝑜𝑠φ2 − 𝐹𝐿 [𝑠𝑖𝑛φ2 +
(𝑠𝑖𝑛φ2 − 𝑠𝑖𝑛φ1)𝑐𝑜𝑠φ2

1 − (𝑠𝑖𝑛φ2 − 𝑠𝑖𝑛φ1)2
] = 0 (10) 

 

So, the procedure follows as seen to single-degree-of-freedom systems. 

7  Conclusions 

This article aims to present relevant concepts and terminology of the theory of structural stability. To achieve 

it, mechanical models with rigid weightless bars associated with circular or linear springs were used. By studying 

the stability of these simple models all the concepts and behaviors commonly used to study the stability of real 

structures have been discussed, such as plane frames, arches and others. This text is an important teaching aid in 

this subject, for students, also serving as a pedagogical support to teachers in the basic disciplines and professional 

courses in civil and mechanical engineering, not familiar the geometric nonlinear analysis. 
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