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Abstract. The arches are structural elements widely used from antiquity to the present times, since these elements 

generally present an increase in rigidity due to their curvature, outstanding in the use of drainage structures and 

vaults. Arches are characterized by a strongly nonlinear behavior, being an important target of study to know the 

structural behavior and to guarantee reliability and safety of structures that have such an element. Thus, this work 

focuses on the parametric study of three-pinned arches with physical and geometric nonlinearities. To investigate 

the complete behavior, first-order elastic (FOE), second-order elastic (SOE), first-order inelastic (FOI) and second-

order inelastic (SOI) analyses are performed using the computer software MASTAN2. Therefore, the influence of 

the geometric and physical parameters, the arch’s shape, the boundary conditions, and the stiffness of three-pinned 

arches are evaluated. The results obtained indicate under which conditions the arches present the better behavior 

performance in terms of stability and resistance. 
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1  Introduction 

Due to their curvature, which introduces strength gains, arches have always been widely used as structural 

elements. Intuitively and empirically, primitive societies used these elements to bridge extensive gaps and create 

wider unobstructed areas. Allied to the absence of tensile-resistant materials, arches became the basis of European 

architecture being widely used during the Roman period, since the compression and bending efforts are 

predominant in this type of element. 

Despite the structural advantages, arches usually present a strongly nonlinear structural behavior, coming 

from different sources, with emphasis on geometry (due to large displacements), material (inelastic behavior), and 

semi-rigid supports. Thus, the parametric study of the influence of the main parameters of an advanced analysis 

becomes essential for a better understanding of the behavior of these elements. 

Therefore, the present research aims at the advanced parametric study of these arches through computational 

finite element (FE) modeling via the computer software MASTAN2. The behavior of three-pinned arches was 

evaluated considering geometric and physical nonlinearities, through first-order elastic (FOE) and second-order 

elastic (SOE) analyses, and first-order inelastic (FOI) and second-order inelastic (SOI) analyses. Thus, the 

influence of geometric and physical parameters, arch’s shape, boundary conditions, and stiffness of the three-

pinned arches are evaluated on this article. 

2  Numerical formulations 

The computer system MASTAN2 [1] can be described as a program for advanced analysis of two- or three-

dimensional frames and trusses subjected to static loads. The analysis routines provide options for elastic and 

inelastic first or second-order analyses [2]. 
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Considering a displacement finite element formulation, for linear elastic structural analysis, it is necessary to 

build the elastic stiffness matrix, Ke, and the problem can be solved according to: 

 eKU P   (1) 

where U is the nodal displacements vector and P is the nodal load vector. For higher levels, the nonlinear 

equilibrium equations are solved using numerical techniques and taking an incremental form of Eq. (1), as showed 

below: 

 tK U P   (2) 

where Kt is the tangent stiffness matrix, ΔU is the nodal incremental displacements vector, and ΔP is the nodal 

incremental load vector and reactions. The matrix Kt has a linear elastic component and one or more additional 

components that are functions of the internal forces and/or displacements existing at the beginning of the external 

load increment. This structural computational problem is well established for obtain the unknown incremental 

displacement vector and to determine in sequence the internal finite elements forces, making this in a gradual way, 

in which the total answer is determined through the sum of the increments. 

In second-order elastic analysis, the deformations and finite displacements effects are accounted for in the 

formulation of the equilibrium equations and Eq. (2) becomes: 

 e gK K U P   (3) 

where Kg is the geometric stiffness matrix, which represents the change in stiffness that results from these effects. 

In first-order inelastic analysis, the algebraic equilibrium equations are defined considering the undeformed 

structure configuration, and Eq. (2) is rewritten as: 

 e mK K U P   (4) 

where the matrix Km represents the change coming from the inelastic behavior of the structural system. In second-

order inelastic analysis, the nonlinear geometric and material parameters are considered, and the structural 

equilibrium equations can be written according to [3]: 

 e g mK K K U P   (5) 

3  Numerical Analysis 

For the development of the numerical models, a statically determined three-pinned arch was considered under 

a radially distributed load q, with translations restricted and rotation permitted at the arch ends. Figure 1presents a 

scheme of the geometry of the complete arch and a simplified scheme of half of the arch. The physical and 

geometric data of a steel arch studied by Pi and Bradford [4] were used and are detailed in Tab.1. The radial load 

q was determined according to: 

 

 2Eq = N R   (6) 

in which NE2 = π2EI/(S/2)2 is the second buckling mode and R is the arch radius. The method applied to solve the 

nonlinear problem was the predictor-corrector and all load increments were 0.001qR/NE2. 

The model mesh and typology, full arch (FA) and half arch (HA), studies were carried out to obtain 

satisfactory results and reduce the computational time. It was observed that the HA model with 10 elements 

presented small differences compared to a more refined one, and this model was chosen for the most of the 

analyses. Figure 2 shows the three-pinned arch equilibrium paths obtained through FOE and SOE analyses, and 

also through the analytical formulations presented by Pi and Bradford [4] for 2θ = 45.8° and 2θ = 22.9°. For both 

analyses, it was possible to observe the similarity of the results. In the Figure 2, see that the x-axis and y-axis 

represent the variations of the dimensionless central radial displacement (v/f) and of the dimensionless radial load 

(qR/NE2), respectively. 

Figure 3 shows the equilibrium paths for the 4 analyses (FOE, SOE, FOI, and SOI), and it can be observed 
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that the limit load obtained through the second-order inelastic (SOI) analysis, considering non-linear physical and 

geometric effects, has the lowest value. Therefore, the need to evaluate the three-pinned arch (2θ = 45,8°) behavior 

considering different sources of nonlinearity is evident. 
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Figure 1. Three-pinned arch: the complete arch geometry and the simplified arch geometry scheme (half arch) 

Table 1. Three-pinned arch data from Pi and Bradford [4] 

Pi and Bradford Arch 

(2015) 

EI 

(kNm²) 
2θ (°) 

Radius (R) 

(m) 
Arc Lenght (S) 

(m) 
NE2 (kN) q (kN/m) 

11154 45.8 13.51 10.8 3775.23 279.42287 

E – Young’s modulus 
I – Second moment of area 

NE2 – Euler’s critical load of 2º 

mode 

 

  
a) 2θ = 45,8° b) 2θ = 22,9° 

Figure 2. Three-pinned arch equilibrium paths 

4  Parametric study 

In this section, the geometric and physical parameters influence on the structural behavior of the three-pinned 

arch are verified. Changes in model geometry, modulus of elasticity, yield stress, arch shape and boundary 

conditions are considered. 
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Figure 3. Three-pinned arch equilibrium paths: FOE, SOE, FOI, and SOI 

4.1 Influence of model geometry 

To verify the influence of the model geometric parameters, SOE and SOI analyses were performed. Table 2 

presents the geometric data for the profiles cross-section, while Tab. 3 presents the information related to the 

geometry, material and loads of the models. It should also be noted that the values for the applied load were defined 

according to Eq. (6), varying according to the modulus of elasticity and second moment of inertia. 

Table 2. Profiles cross-section geometric properties 

Shape A (mm²) 
Izz 

(mm4) 

Iyy 

(mm4) 
J (mm4) 

Cw 

(mm6) 

Zzz 

(mm³) 

Zyy 

(mm³) 

W200X15 1910 1.28E+07 872000 17700 8.31E+09 145000 27200 

W200X31,3 3980 3.13E+07 4.07E+06 117000 4.08E+10 334000 93200 

W250X38,5 4910 6.00E+07 5.87E+06 167000 9.26E+10 512000 123000 

W250X58 7400 8.70E+07 1.87E+07 406000 2.66E+11 768000 281000 

W310X79 10000 1.77E+08 3.99E+07 657000 8.49E+11 1,28E+06 478000 

Table 3. Geometry, material and loading data 

Shape 
E 

(kN/mm²) 

2θ 

(°) 

Radius (R) 

(mm) 

Arch Lenght 

(S) (mm) 
NE2 (kN) 

fy 

(kN/mm²) 

q 

(kN/mm) 

W200X15 

200  45.8      13510.79 10800 

866.4673 

0.25 

0.0641315 

W200X31.3 2118.783 0.1568215 

W250X38.5 4061.566 0.3006163 

W250X58 5889.27 0.4358937 

W310X79 11981.62 0.8868182 

 

Figure 4a shows the equilibrium paths for the different arch profiles considering the SOE. Observe the 

similarity of the curves and that the limit points differences are associated to the dependence that the applied load 

on the value of the second moment of inertia. Similar behavior can be observed for the SOI analyses (Fig. 4b). 

Table 4 presents the elastic and inelastic critical load for each profile. 
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a) SOE b) SOI 

Figure 4. Equilibrium paths for various three-pinned arch profiles 

Table 4. Three-pinned arch critical loads – SOE and SOI for various profiles 

Perfis qR/NE2 (cr) (SOE) qR/NE2 (cr) (SOI) 

W200X15 0.584 0.4240 

W200X31.3 0.569 0.3750 

W250X38.5 0.517 0.2580 

W250X58 0.522 0.2670 

W310X79 0.467 0.1849 

4.2 Young’s modulus variation 

To verify the influence of the Young’s modulus, SOE and SOI analyses were performed, but only the SOI 

results are shown in Fig. 5. Table 5 reproduces the limit load values for both analyses. The SOE results show the 

same limit load value for different Young’s modulus values, which is explained by the direct dependence that 

radial load has on the Young’s modulus. This is not observed for the SOI analyses, justified by the consideration 

of physical nonlinearity. In this case, as the modulus of elasticity increases, the critical load is smaller because the 

applied radial load is greater. 

 

Figure 5. Three-pinned equilibrium paths – SOI: Young’s modulus variation 
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Table 5. Three-pinned critical loads – SOE and SOI for various Young’s modulus 

E (GPa) qR/NE2 (cr) (SOE) qR/NE2 (cr) (SOI) 

100 0.517 0.426 

150 0.517 0.325 

200 0.517 0.258 

250 0.517 0.214 

300 0.517 0.182 

4.3 Influence of yielding stress 

Only SOI analyses were made to verify the influence of the yield stress fy, whose equilibrium paths can be 

seen in Fig. 6 and the critical loads values in Tab. 6. Evaluating these results, it is observed that as it increases the 

material yield stress value, the critical load value also increases, describing an expected behavior. 

 

Figure 6. Three-pinned arch equilibrium paths – SOI for various yield stress 

Tabela 6. Three-pinned arch critical load – ISO for various yield stress 

fy (MPa) qR/NE2 (cr) (SOI) 

200 0.214 

250 0.258 

300 0.299 

350 0.337 

450 0.400 

4.4 Influence of arch shape configurations 

Another influencing parameter studied in this research is the variation in the arch shape. This is made here 

varying the angle of the arch (consequently the height of its focus) and keeping its length constant in all analyses. 

The equilibrium paths obtained for SOE and SOI analyses can be seen in Figs. 7 and 8, respectively. There is a 

similar behavior for the equilibrium paths, with the arch increasing its resistance as the focus increases. 

4.5 Influence of arch boundary conditions 

Finally, this research brings a study related to the influence of boundary conditions on the arch behavior. 

SOE and SOI analyses were carryout considering the complete arch geometry (FA) to allow combinations of the 

support condition, and 2 = 45,8o. The equilibrium paths are shown in Fig. 9 and show similar structural behavior 

for the different boundary conditions. However, with the SOE analysis, it is possible to see that the increase in the 
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degree of fixation increases the rigidity of the model. The structural behavior for the SOI analyses is similar, but 

due to the forces redistribution for the pinned-pinned condition, it is possible to obtain a post-critical response. 

 

Figure 7. Three-pined arch equilibrium paths – SOE for arch shape variations 

  

Figure 8. Three-pined arch equilibrium paths – SOI for arch shape variations 

  
a) SOE b) SOI 

Figure 9. Arch equilibrium paths: SOE and SOI for boundary condition variation 
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5  Final comments 

This study aimed to evaluate the structural behavior of three-pinned arches through numerical modeling using 

the finite element method. To perform the first and second-order elastic and inelastic analyses, the MASTAN2 

software was used, which are in accordance with the results available in literature. 

The three-pinned arches analysed, as expected, showed a strongly non-linear behavior, highlighting the 

importance of taking these effects into account. It was possible to determine the importance that the studied 

parameters have in the arches’ structural behavior. With this study, it was possible to predict the configurations 

that allow the arch to gain strength and stiffness. 
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