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Abstract. Fluid flow in fractured porous media is a truly relevant phenomenon for the oil industry, but also for 
water extraction and aquifer remediation. Modeling this type of problem represents a great challenge, due to the 
complexity of depositional environments. In such cases, it is particularly complex to construct structured meshes 
capable of adequately modeling the reservoir. In this context, in the present paper, we describe a new strategy to 
simulate the single-phase fluid flows in three-dimensional heterogeneous, anisotropic and fractured porous 
media using tetrahedral unstructured meshes. Aiming to model fractures, we use the Embedded Discrete Fracture 
Model (EDFM) in which fractures are represented explicitly, but without the necessity of building a “fracture 
fitting mesh”, which could be an overly complex task. To discretize the elliptic pressure equation, we use the 
recently developed 3-D version of the MultiPoint Flux Approximation that uses the "Diamond stencil" (MPFA-
D) which is a robust and flexible formulation, capable of handling highly heterogeneous and anisotropic 
reservoir rocks, achieving second order accuracy for the scalar variable and first order accuracy for fluxes. Our 
strategy has shown to be notably flexible, and our preliminary results are very promising. 

has achieved good preliminary results. 

Keywords: naturally fractured reservoirs, single-phase flow, embedded discrete fracture model (EDFM), 
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1  Introduction 

Fluid flow in fractured porous media is a relevant phenomenon, not only because most of the remaining oil 
reserves around the world reside in fractured reservoirs [1], but also due to the fact that fractures are also present 
in less deep layers of the crust, which makes them also important in water extraction and aquifer remediation [2]. 
The objective of this work is to numerically simulate the single-phase flow in 3-D naturally fractured reservoirs. 
Modeling this problem is a great challenge, due to the complexity of depositional environments, in which some 
properties as permeability, for example, may vary many orders of magnitude over small distances, in addition to 
the presence of the fractures [3]. These environments are, moreover, anisotropic media, since the sedimentary 
layers can be deposited in different ways, giving different preferential directions to the fluids flows [3], what 
makes particularly complex, in such cases, to construct structured k-orthogonal meshes capable of modeling this 
type of media adequality [4]. In this context, the presence of the fractures, which potentially introduce 
discontinuities on the pressure or the velocity fields [5], represents an additional difficulty, since their influence 
on the fluid flow must be correctly included in the model. 

The models that represent fractures explicitly, treating them as additional degrees of freedom, may achieve 
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more accurate and physics-based results than traditional methods [6], as transmissibility multipliers [7] or dual-
porosity models [8]. Explicit fracture representation methods can be divided into two groups, based on the way 
of the discretization: conforming mesh and non-conforming mesh methods. For the first group, the mesh needs 
to accommodate the fracture positions, which are placed at the cell edges (in 2-D) or faces (in 3-D). This 
condition is critical when it is necessary to discretize small angles and small distances and can lead to excessive 
refinements. This is not necessary for the second one, in which the fractures may cross the rock matrix mesh 
cells. The second group is less restrictive in terms of mesh construction, and we have decided to use it. In this 
context, we have used, to handle the fractures in this work, the embedded discrete fracture models (EDFM) [9], 
in which the degrees of freedom of the rock matrix and fractures are discretized separately, but the coupling 
terms are modeled in terms of discrete variables directly [10]. Referring to the numerical formulation to 
discretize the mathematical model (i.e., the elliptic pressure equation), we used the tridimensional extension of 
the multipoint flux approximation approach that uses the "diamond stencil" (MPFA-D) [11] with explicit 
weighting for the vertex unknowns. This method shows second-order accuracy for the scalar variable and first 
order accuracy for fluxes on arbitrary tetrahedral meshes. We have tested our strategy against some problems 
found in literature and our strategy has shown to be notably flexible with very good results for the evaluated 
problems. 

2  Mathematical Formulation 

The steady-state diffusion problem in 3-D can be described by [11]: 

 ∇ሬሬ⃗ ∙ ℱሬ⃗ = 𝒬(�⃗�),   with   ℱሬ⃗ = −𝚱(�⃗�)∇𝑢   in   �⃗� = (𝑥, 𝑦, 𝑧) ∈ Ω ⊂ ℝଷ (1) 

in which ℱሬ⃗  represents the diffusive flux, u is the scalar or potential variable, 𝒬(�⃗�) is the source term and 𝚱(�⃗�) is 
the diffusion tensor that satisfies the ellipticity condition [12] and that can be written, in Cartesian coordinates, 
as: 

 𝚱(�⃗�) = 

𝜅௫௫ 𝜅௫௬ 𝜅௫௭

𝜅௬௫ 𝜅௬௬ 𝜅௬௭

𝜅௭௫ 𝜅௭௬ 𝜅௭௭

൩ (2) 

Moreover, the appropriate boundary conditions are defined by: 

 ൜
𝑢 = 𝑔        on   Γ

ℱሬ⃗ ∙ 𝑛ሬ⃗ = 𝑔ே   on   Γே

 (3) 

where the scalar functions 𝑔 (prescribed values for u) and 𝑔ே (prescribed fluxes) are, respectively, defined on 
Γ (Dirichlet) and Γே (Neumann) boundaries, with 𝜕Ω = Γ ⋃ Γே and Γ ⋂ Γே = ∅, and 𝑛ሬ⃗  is the unitary outward 
normal vector. 

3  Numerical Formulation 

In this section, we present the development of the EDFM for tetrahedral meshes and of the MPFA-D. 
Given a computational domain Ω with boundary Γ, we discretize it by a set of non-overlapping polyhedral 
control-volumes. Then, by integrating Eq. (1) and applying the Gauss’s Divergence Theorem over the control-
volume 𝐿 (with boundary Γ  and volume Ω ), we have: 

 න ℱሬ⃗ ∙ 𝑛ሬ⃗
ಽ

𝜕Γ = න 𝒬
ஐಽ

𝜕Ω  (4) 

By using the mean value theorem, we can write: 

  ℱሬ⃗ ∙ 𝑁ሬሬ⃗ ห
𝒻̅

𝒻∈̅ಽ

= 𝒬ത Ω  (5) 

where 𝒬ത  is the mean source term in 𝐿 and 𝒻  ̅is a face belonging to Γ  , which is the set of boundary faces of the 
control-volume 𝐿. In Eq. (5) different approximations for the flux expression ℱሬ⃗ ∙ 𝑁ሬሬ⃗  produce different finite 
volume approximations. 
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3.1 The Multipoint Flux Approximation using the Diamond Stencil in 3-D 

We start from the formulation presented by Lira Filho et al. [11], which is applicable to diffusion problems 
in 3-D tetrahedral meshes, in which the unique flux expression through a face, considering the configuration 
shown in Figure 1, is given by: 

 ℱሬ⃗ ∙ 𝑁ሬሬ⃗ = −𝔎ห𝑁ሬሬ⃗ ห (𝑢ோ − 𝑢 ) −
1

2
𝔇൫𝑢 − 𝑢ூ൯ +

1

2
𝔇ூ൫𝑢 − 𝑢൯൨ (6) 

with: 

 𝔎 =
Κோ

Κ


ℎ Κோ
 + ℎோΚ

  (7) 

 
𝔇𝒾𝒿 =

〈𝜏𝒾𝒿, 𝐿𝑅ሬሬሬሬሬ⃗ 〉

ห𝑁ሬሬ⃗ ห
ଶ −

1

ห𝑁ሬሬ⃗ ห
൭ℎ

Κ

௧,𝒾𝒿

Κ
 + ℎோ

Κ
ோ
௧,𝒾𝒿

Κோ
 ൱ ;  𝒾, 𝒿 = 𝐼, 𝐽, 𝐾 

(8) 

where: 

 𝜏𝒾𝒿 = 𝑁ሬሬ⃗ × ଛଜሬሬሬ⃗ ;  Κ
𝓀
 =

𝑁ሬሬ⃗ ்𝚱𝓀𝑁ሬሬ⃗

ห𝑁ሬሬ⃗ ห
ଶ ;  Κ

𝓀
௧,𝒾𝒿

=
𝑁ሬሬ⃗ ்𝚱𝓀𝜏𝒾𝒿

ห𝑁ሬሬ⃗ ห
ଶ ;  𝓀 = 𝐿, 𝑅;  𝒾, 𝒿 = 𝐼, 𝐽, 𝐾  (9) 

where ℎ𝓀 is the height from 𝓀 (𝓀 = 𝐿, 𝑅) to the face 𝐼𝐽𝐾, whose normal area vector is 𝑁ሬሬ⃗ . In this formulation, the 
auxiliary vertex unknowns (𝑢ூ, 𝑢, 𝑢) could be interpolated as a weighting of the values of 𝑢 at the cells sharing 
the respective node (𝐼, 𝐽 or 𝐾). We use the linearity-preserving interpolation strategy presented by Lira Filho et 
al. [11]. 

 

Figure 1 – Face 𝐼𝐽𝐾 shared by the tetrahedrons 𝐿 and 𝑅 , highlighting ℒመ and ℛ .  

3.2 Fracture-Matrix and Fracture-Fracture Intersections Calculation 

Let �̂� be a generic tetrahedron defined by the intersections of the planes 𝜋ଵ, 𝜋ଶ, 𝜋ଷ and 𝜋ସ (with normal 
vectors 𝑛ሬ⃗ ଵ, 𝑛ሬ⃗ ଶ, 𝑛ሬ⃗ ଷ and 𝑛ሬ⃗ ସ) and let 𝜋 be the plane containing the fracture 𝑓 (with normal vector 𝑛ሬ⃗ ). Considering 
that 𝑃ሬ⃗ is a point on 𝜋 and that 𝑇ሬ⃗ ଵ, 𝑇ሬ⃗ ଶ, 𝑇ሬ⃗ ଷ and 𝑇ሬ⃗ ସ are the vertices of �̂�, we can determine if there exist any 
intersection between �̂� and 𝜋, verifying if all the vertices of �̂� are in the same hemispace, considering the two 
hemispaces defined by 𝜋. If it is false, then the intersection between �̂� and 𝜋 exists. If 𝜋 ∩ �̂� ≠ ∅, we can 
calculate the area of the intersection between the plane fracture and the tetrahedron through the following 
algorithm: Considering that 𝑃ሬ⃗  is a point on 𝜋 (as well as 𝑃ሬ⃗ on 𝜋), the intersection between the planes defining 
�̂� two-by-two and the plane containing 𝑓 will give rise to six linear systems as: 

 

𝑛௫ 𝑛௬ 𝑛௭

𝑛௫ 𝑛௬ 𝑛௭

𝑛௫ 𝑛௬ 𝑛௭

൩ ቈ
𝑥
𝑦
𝑧

 = 

𝑛௫𝑃௫ + 𝑛௬𝑃௬ + 𝑛௭𝑃௭

𝑛௫𝑃௫ + 𝑛௬𝑃௬ + 𝑛௭𝑃௭

𝑛௫𝑃௫ + 𝑛௬𝑃௬ + 𝑛௭𝑃௭

 ;  
𝑖, 𝑗 = 1,2,3,4

𝑖 ≠ 𝑗
 (10) 

whose solutions will define six points coordinates of which, however, only three or four will be on the faces of �̂�. 

𝐿 

𝐾 

𝐽 

𝐼 

𝑅  

𝑄 

𝑀 
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These three or four points will form the polygon 𝑝 = 𝜋 ∩ �̂�, as shown in Figure 2. 

 

Figure 2 – Intersection between 𝜋 and �̂�. 

Thus, we have two coplanar polygons (𝑓 and 𝑝) intersecting each other, so that 𝑞 = 𝑓 ∩ 𝑝 = 𝑓 ∩ �̂�, as 
shown in Figure 3. Mathematically, it is obtained by the intersections between the straight lines containing the 
edges of 𝑓 and 𝑝. Naturally, if 𝑓 have 𝓃 edges and 𝑝 have 𝓂 edges, we will obtain 𝓃 ∙ 𝓂 intersection points, of 
which not all will be part of 𝑞 = 𝑓 ∩ 𝑝, but only those within the limits of the edges of the polygons, together 
with the vertices of 𝑓 inside 𝑝 and the vertices of 𝑝 inside 𝑓. 

 

Figure 3 – Intersection between 𝑓 and 𝑝. (a) 𝑓, 𝑝, �̂�. (b) 𝑞 = 𝑓 ∩ 𝑝 = 𝑓 ∩ �̂�. 

The intersection between two plane fractures, whenever it is not parallel, in its turn, is made by the 
following algorithm: let 𝜋ଵ be the plane containing the fracture 𝑓ଵ and let 𝜋ଶ be the plane containing the 
fracture 𝑓ଶ. Let 𝑟 = 𝜋ଵ ∩ 𝜋ଶ be a straight line coplanar to 𝑓ଵ and to 𝑓ଶ, this way we can determine the segments 
𝑠ଵ = 𝑟 ∩ 𝑓ଵ and 𝑠ଶ = 𝑟 ∩ 𝑓ଶ (intersecting 𝑟 with the straight lines containing the edges of 𝑓ଵ and 𝑓ଶ), so that 𝑓ଵ ∩

𝑓ଶ = 𝑠ଵ ∩ 𝑠ଶ, as shown in Figure 4. 

3.3 Fracture-Matrix and Fracture-Fracture Transmissibilities Calculation 

The matrix-fracture transmissibility is calculated as [13]: 

 𝑇௧መ = ൫𝑇௧መ
ିଵ + 𝑇

ିଵ൯
ିଵ

 (11) 

where: 

 𝑇௧መ =
2(𝑛ሬ⃗ ்𝚱௧መ𝑛ሬ⃗ )𝐴௧መ

〈𝑑〉
;   𝑇 =

2൫𝑛ሬ⃗ ்𝚱𝑛ሬ⃗ ൯𝐴௧መ

𝑤

 (12) 

𝝅𝒇 

�̂� 

𝒑 

(a) 
 

(b) 

𝝅𝒇 

 
𝝅𝒇 

 

𝒇 𝒇 

𝒑 𝒑 

𝑞 
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in which 𝐴௧መ is the area of the intersection 𝑓 ∩ �̂� (𝑓 is a fracture cell and �̂� is a rock matrix cell), 𝑛ሬ⃗  is the unitary 
normal vector of the plane containing 𝑓. 𝚱௧መ and 𝚱 are the permeabilities of �̂� and 𝑓, respectively, 𝑤 is the 
aperture of the fracture 𝑓 and: 

 〈𝑑〉 =
1

Ω௧መ
න |𝑛ሬ⃗ ∙ 𝑟|

ஐ

𝜕Ω௧መ (13) 

where 𝑟 is a vector from the center of 𝑓 ∩ �̂� to a point in �̂�. 

  

  

Figure 4 – Intersection between 𝑓ଵ and 𝑓ଶ. (a) 𝑟 = 𝜋ଵ ∩ 𝜋ଶ. (b) 𝑠ଵ = 𝑟 ∩ 𝑓ଵ. (c) 𝑠ଶ = 𝑟 ∩ 𝑓ଶ. (d) 𝑠 = 𝑠ଵ ∩ 𝑠ଶ =

𝑓ଵ ∩ 𝑓ଶ. 

The fracture-fracture transmissibility is calculated as: 

 𝑇భమ
= ൫𝑇భ

ିଵ + 𝑇మ

ିଵ൯
ିଵ

 (14) 

where: 

 𝑇భ
=

2൫𝑛ሬ⃗ ଵ
்𝚱భ

𝑛ሬ⃗ ଵ൯𝑤భ
𝐿భమ

〈𝑑ଵଶ〉
;   𝑇మ

=
2൫𝑛ሬ⃗ ଶ

்𝚱మ
𝑛ሬ⃗ ଶ൯𝑤మ

𝐿భమ

〈𝑑ଶଵ〉
 (15) 

in which 𝐿భమ
 is the length of the intersection 𝑓ଵ ∩ 𝑓ଶ (𝑓ଵ and 𝑓ଶ are fractures cells), 𝑛ሬ⃗  is the unitary normal 

vector of the plane containing 𝑓. 𝚱
 is the permeability of 𝑓, 𝑤

 is the aperture of the fracture 𝑓 (𝑖 = 1,2) and: 

 〈𝑑〉 =
1

Γ

න ห𝑛ሬ⃗  ∙ 𝑠ห


𝜕Γ
 (16) 

where 𝑠 is a vector from the center of 𝑓ଵ ∩ 𝑓ଶ to a point in 𝑓ଵ. 

4  Results 

Here, we present the results for a 2-D one-phase flow problem and for its 3-D cubic extruded version: 
consider the one-phase flow in a 2-D domain defined as Ω = [0,100]ଶm, with prescribed pressure 𝑝 = 1 bar at 
�⃗� = (0,0) and prescribed flow 𝑞 = 10ିହ m3/d at �⃗� = (100,100), with isotropic permeability tensors for the 
rock matrix (𝑚) and for the fracture (𝑓) defined (in Darcy) as: 

𝒇𝟐 𝒇𝟐 

𝒇𝟏 𝒇𝟏 

𝒇𝟐 

𝒇𝟏 

𝒇𝟐 

𝒇𝟏 

𝒓 𝒓 

𝒓 𝒓 

𝝅𝒇𝟐 

𝝅𝒇𝟏 

𝝅𝒇𝟐 

𝝅𝒇𝟏 

𝝅𝒇𝟐 

𝝅𝒇𝟏 

𝝅𝒇𝟐 

𝝅𝒇𝟏 

𝑠ଵ 

𝑠ଶ 
 

𝑠 

(a) (b) 

(c) (d) 
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 𝐾 = 10ିହ 0
0 10ିହ൨ ;  𝐾 = ቂ10଼ 0

0 10଼ቃ ; (17) 

The fractures are placed as shown in Figure 5a, in which we can also see the 2-D mesh (with 1,860 
triangles). Through the strategy presented by Cavalcante et al. [14], which is a conforming mesh hybrid-grid 
method, we can obtain the solution for this problem, as shown Figure 5d, in which the calculated pressure at the 
production well is 𝑝 = 0.4750 bar. This result was used as reference for comparison purposes. We have also 
solved a 3-D cubic extruded version of this problem, creating an unstructured mesh with 34,963 tetrahedral cells 
and including the contributions of the fractures as explained in this paper. The fractures were considered as two 
rectangles, each one corresponding to one “beam” of the cross, as shown in Figure 5b. We discretized the 
fractures by two ways: in the first one, we consider each rectangle as one additional degree of freedom, as shown 
in Figure 5b; in the second one, we divided each rectangle as eight triangles and each triangle is one additional 
degree of freedom, as shown in Figure 5c. The result of this 3-D problem is shown in Figure 5e (for the fractures 
discretization shown in Figure 5b) and in Figure 5f (for the fractures discretization shown in Figure 5c). In both 
cases, the calculated pressure at the production well is 𝑝 = 0.4278 bar. Since the permeability of the fractures 
is very high, the pressure along them is almost constant, therefore it does not make any appreciable difference to 
discretize them or not. The pressure fields obtained by the 2-D and 3-D strategies are at the same magnitude 
order, despite not being equivalent. These differences are expected since we did not use the same meshes. Even 
so, we consider that the strategy presented here is capable of satisfactorily including the influences of high 
permeability fractures in a 3-D domain adding just a few degrees of freedom to the original mesh (the rock 
matrix one) and without the necessity to build it (the rock matrix mesh) fitting the fractures positions, as we do 
when using the conforming mesh hybrid-grid method [14]. 

 

Figure 5 – Intersection between. (a) 2-D mesh. (b) Fractures in 3-D problem. (c) Discretization of the fractures in 
3-D problem with 16 cells. (d) Solution of the 2-D through the strategy of Cavalcante et al. [14]. (e) Solution of 
the 3-D version of the same problem through here presented strategy using 2 fracture cells. (f) Solution of the 3-

D version of the same problem through here presented strategy using 16 fracture cells. 

5  Conclusions 

In this work, we presented an embedded discrete fracture model (EDFM) to be applied on unstructured 

(c) (b) (a) 

(f) (e) (d) 
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tetrahedral meshes in context of one-phase flow in naturally fractured reservoirs. To discretize the elliptic 
pressure equation, we use the recently developed 3-D version of the multipoint flux approximation that uses the 
"diamond stencil" (MPFA-D). We have discretized the fractures by two ways, as 2 rectangular cells and as 16 
triangular cells, without any noticeable differences, in terms of results between them. Since the permeability of 
the fractures is very high, the pressure along them is almost constant, therefore it does not make any appreciable 
difference to discretize them or not. When compared with the results obtained in 2-D by the conforming mesh 
hybrid-grid method presented by Cavalcante et al. [14], our strategy has also achieved good preliminary results, 
which are in the same magnitude order than those ones, but without the necessity to build the rock matrix mesh 
fitting the fractures positions, as we do when using the conforming mesh hybrid-grid method [14], and needing 
just adding a few degrees of freedom to the problem. 
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