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Abstract. In this work, we investigate the accuracy of different finite element post-processing strategies in the
approximation of dual fields in elliptic problems such the stress tensor field in the linear elasticity problem, with
special attention to problems with discontinuous coefficients.
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1 Introduction

The development of accurate and stable finite element methods for elliptic problems is related to the choice
of the main unknowns variables and the respective finite-dimensional subspaces for their approximation. Some
classical examples of unknowns/problems are the displacement and the stress tensor in the linear elasticity and the
flux and the pressure in the Darcy problem. For instance, let Ω be a bounded open subset in R2, with a Lipschitz
continuous boundary ∂Ω. If Ω represents the domain of a rigid porous medium saturated with an incompressible
fluid, the relation between the gradient of the poro-pressure p : Ω → R and the averaged (Darcy’s) velocity
v : Ω→ R2 is given by the well-known Darcy’s law (Correa et al. [1])

v = −K∇p in Ω, (1)

whereK = K(x) is a symmetric and uniformly positive definite tensor representing the permeability of the porous
matrix divided by the fluid viscosity. The Darcy problem is determined by including the mass balance equation

div v = f in Ω, (2)

and appropriate boundary conditions, where f is a distributed source/sink function. Similarly, if Ω represents
a domain occupied by a linear elastic body, the deformation suffered is related to the stress field σ : Ω → S,
where S = R2×2

sym is the space of symmetric second order real tensors, through the constitutive equation (Arnold
[2], Quinelato et al. [3])

Aσ = ε(u) in Ω. (3)

u : Ω→ R2 is the displacement field, ε(u) is the corresponding infinitesimal strain tensor, given by the symmetric
part of the gradient of u,

ε (u) = ∇su =
1

2

(
∇u+ (∇u)

t
)
.

The material properties are determined by the compliance tensorA, which is a positive definite symmetric operator
from S to itself, possibly depending on the point x ∈ Ω (Arnold [2]). In the isotropic case it is

Aσ =
1

2µ

(
σ − λ

2 (λ+ µ)
tr (σ) I

)
, (4)
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where λ ≥ 0 and µ > 0 are the Lamé coefficients and I denotes the identity tensor. The inverse of A is the
elasticity tensor C : S→ S, that in the isotropic case is given by

Cε = 2µε+ λ tr(ε)I = σ. (5)

The system of the linear elasticity problem are closed by the introduction of the equilibrium equation, which states
the conservation of linear momentum,

divσ = g in Ω, (6)

and g denotes the imposed volume load. The divergence operator div applies to the matrix field σ row-by-row.
The systems eq. (1)-(2) (Darcy problem) and eq. (3)-(6) (Elasticity problem) are prototypes of elliptic

problems (Arnold [2]), written as systems of first-order PDEs. Using the finite element terminology, there are
two main approaches to solve such systems: the use of Mixed methods (Quinelato et al. [3], Raviart and Thomas
[4], Arbogast and Correa [5]), that are based on the simultaneous approximation of the pairs (p,v) and (u,σ), and
the use of Primal methods (Arnold [2], Raviart and Thomas [6]), that are based on the second order elliptic PDE
for the primal variable (poro-pressure for Darcy and displacement for Elasticity), which is obtained by replacing
the constitutive equation in the balance equation. The main characteristic of the Mixed methods is the use of
different finite element spaces for each variable. In order to provide stable numerical solutions, the spaces need
to be compatible in the sense that they must satisfy conditions such as the ellipticity on the kernel and the inf-
sup condition (Arnold [2]). This compatibility requirement reduces the flexibility in constructing such subspaces,
implying on a higher code complexity, when compared to the Primal methods (Correa et al. [1]). Within the Primal
methods, the primal field can be approximated by using different Finite Element strategies, such as the classical
H1-conforming Galerkin (Arnold [2]), Primal-Hybrid Formulations (Raviart and Thomas [6]), and Discontinuous
Galerkin Methods (Arnold et al. [7]). The approximation of the primal field using the classical H1-conforming
Galerkin method (Arnold [2]) leads to optimal-order solutions, but the evaluation of the dual field demands a post-
processing strategy. The post-processing can be local, such as taking the gradient of the solution for the primal
variable and using the constitutive equation, or can be evaluated by setting a new problem in patches of elements or
in the whole domain (Loula et al. [8], Correa and Loula [9]). The aim of post-processing techniques is to provide
approximations for the dual variable with continuous normal components between adjacent elements and good
mass conservation properties (Correa et al. [1]).

In Loula et al. [8] the authors presented a family of higher-order gradient post-processings for second order
elliptic problems, including global, element-by-element and macroelement strategies based on least-squares residu-
als of the balance law and the constitutive equation. Although other primal methods can be employed, the proposed
post-processings used the gradient of the primal solution obtained by the H1-conforming Galerkin method as a
source for the evaluation of the dual variable. Both classical Lagrangian H1-conforming (nodal continuous) finite
element spaces and H(div)-conforming finite element subspaces (such as the Raviart-Thomas spaces in Raviart
and Thomas [4]) can be used for the approximation of the Darcy velocity and the stresses. In particular, the con-
tinuous Lagrangian strategy can be easily implemented as standard single field formulations, with great flexibility
in the choice of the finite element spaces (Loula et al. [8]). However, the results presented in Correa and Loula
[9] and Loula et al. [10] for the Darcy problem with discontinuous permeability fields, showed that the Darcy
velocity approximated by continuous Lagrangian elements is subject to spurious oscillations due to the imposition
of continuity on the tangent components of the velocity field on the interface of the elements.

In the present work we follow the steps of Correa and Loula [9] and show that a similar drawback happens
when the continuous Lagrangian global post-processing of Loula et al. [8] is used to approximate the stress field in
problems where the Lamé coefficients are discontinuous. In this case the spurious results are due to the imposition
of nodal continuity to the vector στ , where τ is the unitary vector tangent to the interface of discontinuity. In order
to do so, first we present in Section 2 the global post-processing of Loula et al. [8], in the context of the linear Elas-
ticity problem, and also an alternative local stress-recovery strategy that guarantees the continuity of the traction
vector σn, where n is the unitary outward vector, normal to the element edges. Then, in Section 3 we perform
convergence studies in two different problems. The first one has homogeneous Lamé coefficients and is intended
to confirm the a-priori estimates established in Loula et al. [8] for the use of the continuous Lagrangian global
post-processing to problems with smooth solutions. The second one has an interface of discontinuity of the Lamé
coefficients and is specially constructed to have a solution with continuous traction vector σn but discontinuous
vector στ . Finally, conclusions are given in Section 4.

2 Finite element post-processings

Let L2(T, Y ) be the space of square integrable functions with domain T ⊂ R2, taking values in the finite-
dimensional vector space Y , with inner product (·, ·) and norm ‖ · ‖0 = ‖ · ‖. We denote by Hm(T, Y ) the
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Sobolev space consisting of functions with all derivatives of order at most m square integrable, with norm ‖ · ‖m
and seminorm | · |m and the space H(div, T, Y ) of square-integrable fields with square-integrable divergence, as
usual. We similarly denote by Pk(T, Y ) the space of polynomial functions on T of degree at most k taking values
in Y , and by Pk1,k2(T, Y ) the space of polynomial functions on T of degree at most k1 ≥ 0 in x = x1 and degree
at most k2 ≥ 0 in y = x2, taking values in Y . The range space Y will be either R, R2, S or M = R2×2.

2.1 Primal formulation

The elliptic problem posed on displacement field only is found by replacing the strain-stress relation eq.(5)
in the equilibrium equation, eq. (6), given

div (Cε(u)) = g in Ω, u = 0 on ∂Ω, (7)

that is the basis for the definition of the standard primal Galerkin method (Arnold [2]). For simplicity we only
consider homogeneous Dirichlet boundary conditions, although other boundary conditions could be handled in
the usual ways. It is important to remark that this standard method is suitable for compressible problems. For
incompressible problems, when the Poisson ratio ν = λ/2(λ+ µ) approaches to 1/2 (i.e., λ→∞), the elasticity
tensor C becomes infinite, and a mixed formulation must be employed as Arnold [2] and Quinelato et al. [3]. The
classical primal variational formulation of eq. (7) consists on finding the displacement field u ∈ U such that∫

Ω

Cε(u) : ε(v) dx = −
∫

Ω

g · v dx, ∀ v ∈ U , (8)

with U =
{
v ∈ H1(Ω,R2);v = 0 on ∂Ω

}
. Let {Th} be a family of partitions Th = {K} of Ω, indexed by the

parameter h, which represents the maximum diameter of the elements K ∈ Th. Henceforth we assume that the
elementsK are convex quadrilaterals, but the results also hold for triangular elements. Denoting by K̂ the standard
reference element, in our case the unit square [0, 1]× [0, 1], each geometrical element K ∈ Th, is generated from
an isomorphism FK : K̂ → R2 such that K = FK(K̂). Assume that we take finite-dimensional subspace Ukh ⊂ U
composed of continuous piecewise Lagrangian polynomials of degree k ≥ 1, given by

Ukh =
{
vh ∈ U ; vh|K ∈ FK(Pk,k(K̂,R2))∀K ∈ Th

}
, (9)

then it is well known that the Galerkin method to eq. (8) yields to convergent approximate solutions uh ∈ Ukh
(Arnold [2]). The Galerkin local post-processing for the stress can then be defined by taking the gradient of the
solution uh element by element and using the constitutive equation, eq. (5),

σG
h

∣∣
K

= Cε(uh)|K ∀K ∈ Th. (10)

In this case, for regular solutions, Arnold [2] holds the following estimates

‖u− uh‖ ≤ Chk+1|u|k+1 and ‖σ − σG
h ‖ ≤ Chk|u|k+1. (11)

Although convergent, this strategy leads to locally discontinuous stresses, do not fulfilling the requirement of
continuous traction vectors.

2.2 Global post-processing

Now, let Sh be a finite element subspace of H(div,Ω,S) and uh ∈ Ukh the previously defined Galerkin
solution of eq. (7). The global post-processing of Loula et al. [8] combines the least-squares residuals of eq. (3)
and eq. (6) and defines the approximate stress field σP

h ⊂ Sh as the solution of the finite-dimensional variational
problem∫

Ω

AσP
h : τh dx + (δh)α

∫
Ω

divσP
h ·div τh dx =

∫
Ω

ε(uh) : τh dx + (δh)α
∫

Ω

g·div τh dx, ∀τh ∈ Sh, (12)

with δ and α positive real parameters. The analysis presented in Loula et al. [8] covers the use of both continuous
Lagrangian andH(div)-conforming constructions of Sh. In particular, the use of the continuous Lagrangian based
subspace of degree l, given by

Slh =
{
τh ∈ H1(Ω,S); τh|K ∈ FK(Pk,k(K̂, S))∀K ∈ Th

}
, (13)
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leads to the following a-priori error estimate for the stress

‖σ − σP
h ‖0 ≤ C(hl+α/2|σ|l+1 + hk+1−α/2|u|k+1). (14)

Notice that the approximate solution σP
h is fully continuous. Thus, as explained in the introduction, we can expect

difficulties in the approximation of problems where the solution presents an interface of discontinuity.

2.3 Local stress recovery

The local stress recovery strategy makes use of an approximation th for the traction vector t = σn, uniquely
defined on the edges of the partition Th. From th we construct an unique stress approximationσL

h ∈ RT 0(Ω,R2)×
RT 0(Ω,R2) such that, for each element K ∈ Th, the following local systems are satisfied∫

∂K

σL
hn · ei ds =

∫
∂K

th · ei ds, i = 1 and 2, (15)

where ei denotes the i-th canonical vector of R2. RT 0(Ω,R2) is the lowest order Raviart-Thomas space, which
in quadrilateral meshes is given by

RT 0(Ω,R2) = {v ∈ H(div,Ω,M); v|K ∈ PFK
(P1,0(K̂,R2)× P0,1(K̂,R2)), ∀K ∈ Th}, (16)

where PFK
denotes the Piola’s transform between K̂ and K. Since th is uniquely determined, eq. (15) guarantees

that σLh has continuous traction. In this work, we take for the internal edges

th|e =
1

2

(
C|K1

ε(uh|K1
) + C|K2

ε(uh|K2
)
)
n, (17)

where n is the unitary vector normal to e and K1 and K2 are the two elements sharing the edge e. If the edge e is
on the boundary ∂Ω, we simply take th|e = Cε(uh)n.

3 Numerical experiments

In this section we perform a set of numerical experiments to evaluate the behaviour of the post-processing
techniques discussed in Section 2. The numerical experiments are divided into two parts. In the first one we
propose and solve an isotropic and homogeneous problem with the exact solutions u and σ being continuous in
the whole domain. In the second part we propose an heterogeneous problem, defined on the same domain and with
the same exact solution for the displacement as the previous problem, but now the stress tensor σ has a tangential
interface discontinuity. In both problems the domain Ω = [−1, 1]× [−1, 1] is divided into n× n square elements,
with n = 8, 16, 32, 64 and 128. The exact solution for the displacement is

u(x, y) =

−π2 y2 cos(πx)− 10xy

y sin(πx) + 5x2

 , (18)

and numerical solution uh is obtained by the Galerkin method with the space U1
h . Dirichlet boundary conditions

are imposed on the sides y = −1 and y = 1 and Neumann conditions are imposed on the sides x = −1 and x = 1.
Approximations for the stress field are then computed by three different post-processing strategies. In the global
post-processing, the stresses were approximated in the space S1

h and the symmetry of σ was strongly enforced by
imposing that σ1,2 = σ2,1. We also set δ = 1 and α = 1 since, according to the analysis developed in Loula et al.
[8], this choice leads to improved convergence rates for σh. Finally, the third strategy approximates σ by the stress
recovery strategy described in Section 2.3, using the lowest order Raviart-Thomas space RT 0. We notice that in
this strategy, the symmetry of σ is not imposed, but the continuity of the traction vector is satisfied.

Homogeneous test problem For the first set of experiments we solve the model problem (7) by setting

g(x, y) =

( 9π3

2 y2 + π) cos(πx)

π2

10 y sin(πx)− 1

 and Cε(u) = 0.8ε(u) + 0.1 div(u)I.

The exact solution for the stress tensor can be easily obtained from eq. (18) and eq. (3), which we notice that it
has continuous components in the whole domain. Table 1 presents the L2 errors and the convergence rates for the
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approximation of u by the Galerkin method, and the approximation of σ by post-processing strategies. The results
are in agreement with the error estimate eq. (11) for k = 1 and are slight better than the predicted for the global
post-processing given by eq. (14), with k = l = δ = α = 1. A comparison between the approximated solutions
for the σ1,1, σ1,2 and σ2,2 components of the the stress field obtained by the different post-processing strategies is
presented in Figures 1, 2 and 3, respectively.

Table 1. L2 errors and its convergence rates in the approximation of u and σ using the three post-processing
approaches for the homogeneous problem.

‖u− uh‖0,Ω ‖σ − σG
h ‖0,Ω ‖σ − σL

h‖0,Ω ‖σ − σP
h ‖0,Ω

n err. rate err. rate err. rate err. rate

8 1.3596e-01 1.97 1.1001e+00 0.99 1.5673e+00 1.05 4.6879e-01 1.26

16 3.4263e-02 1.99 5.5141e-01 1.00 7.5189e-01 1.06 1.1452e-01 2.03

32 8.5843e-03 2.00 2.7589e-01 1.00 3.6772e-01 1.03 2.4455e-02 2.23

64 2.1472e-03 2.00 1.3797e-01 1.00 1.8198e-01 1.01 5.5793e-03 2.13

128 5.3688e-04 2.00 6.8987e-02 1.00 9.0551e-02 1.01 1.3730e-03 2.02
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Figure 1. Homogeneous problem: component σ1,1 of the stress field approximated with the local Galerkin, the
global post-processing and the local stress recovery strategy.
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Figure 2. Homogeneous problem: component σ1,2 of the stress field approximated with the local Galerkin, the
global post-processing and the local stress recovery strategy.

Heterogeneous test problem In this second experiment we set the source term as

g(x, y) =

( 9π3

2 y2 + π) cos(πx)

π2

10 y sin(πx)− 1.

 if x ≥ 0 and g(x, y) =

( 9π3

2 y2 + π) cos(πx)

7π2

10 y sin(πx)− 7.

 , otherwise.

For the elasticity tensor C we adopt

Cε(u) = 0.8ε(u) + 0.1 div(u)I if x ≥ 0 and Cε(u) = 0.2ε(u) + 0.7 div(u)I, otherwise.

In addition to the introduction of an heterogeneity on the elasticity tensor, another major difference between the
first and the second test problem relies on the exact solution for σ, which now presents a discontinuity in the
component σ2,2 on the interface x = 0. The results presented in Table 2 show that the convergence rates of the
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Figure 3. Homogeneous problem: component σ2,2 of the stress field approximated with the local Galerkin, the
global post-processing and the local stress recovery strategy.

stress σP
h approximated by the Lagrangian global post-processing, drops to O(h0.5). As expected, this bad result

is a consequence of the imposition of nodal continuity for the approximate stress on the interface, as can be seen
on the results shown in Figures 4, 5 and 6. It is important to note that, among the three post-processings, the local
stress recovery was the only strategy capable of accurately represent the continuity of the component σ1,1 and the
discontinuity of the component σ2,2.

Table 2. L2 errors and convergence rates in the approximation of u and σ using the three post-processing ap-
proaches for the heterogeneous problem.

‖u− uh‖0,Ω ‖σ − σG
h ‖0,Ω ‖σ − σL

h‖0,Ω ‖σ − σP
h ‖0,Ω

n err. err. rate err. rate err. rate

8 1.5206e-01 1.86 9.6093e-01 0.97 1.6151e+00 1.03 1.0970e+00 0.75

16 4.0360e-02 1.91 4.8665e-01 0.98 7.8272e-01 1.05 7.2001e-01 0.61

32 1.0316e-02 1.97 2.4448e-01 0.99 3.8455e-01 1.03 5.0402e-01 0.51

64 2.5965e-03 1.99 1.2241e-01 1.00 1.9068e-01 1.01 3.5651e-01 0.50

128 6.5046e-04 2.00 6.1227e-02 1.00 9.4965e-02 1.01 2.5241e-01 0.50
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Figure 4. Heterogeneous problem: component σ1,1 of the stress field approximated with the local Galerkin, the
global post-processing and the local stress recovery strategy.
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Figure 5. Heterogeneous problem: component σ1,2 of the stress field approximated with the local Galerkin, the
global post-processing and the local stress recovery strategy.
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Figure 6. Heterogeneous problem: component σ2,2 of the stress field approximated with the local Galerkin, the
global post-processing and the local stress recovery strategy.

4 Conclusions

In this work, we studied the accuracy and the convergence behavior of three post-processing strategies for
the approximation of the dual variable in an elliptic problem with discontinuous coefficients, namely the stress
field in the linear elasticity problem. The results confirm the predictions that the global post-processing strategy
with continuous Lagrangian approximations for the stress is not appropriate for the solution of problems with
discontinuous coefficients. A simple local stress recovery strategy, based on the lowest index Raviart-Thomas
elements, was the only one capable of accurately represent the continuity/discontinuity constraints of the stress
field in the heterogeneous test.
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