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Abstract. Present work analyzes the numerical cost-benefit ratio of Dvorak’s Transformation Field Analysis to
evaluate elastoplastic behavior of periodically perforated metal sheets. The accuracy measurement and the process-
ing time are analyzed by implementing a finite element approach integrated with the Transformation Field Analysis
technique for different meshes and finite element orders. Numerical studies are employed to compare with standard
Finite Element Analysis for elastoplastic analysis of periodically perforated metal sheets. The numerical results
show the technique’s capabilities and favorable scenarios, besides the influence of domain discretization and finite
element order.

Keywords: Transformation Field Analysis, Perforated Metal Sheets, Finite Element Method, Computational Per-
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1 Introduction

Micromechanics of porous materials assesses the influence of the porous’s geometrical configuration and
mechanical properties of the matrix material by homogenization and multiscale techniques. Determination of the
homogenized inelastic response of porous materials integrated into a multiscale analysis continues to challenge
researchers because of the complex microstructure stress and inelastic strain fields.

Those techniques are alternatives to the Finite Element Method (FEM) for mechanical analysis of periodic
media. The increase in sophistication of the models and evaluation of localized phenomena requires refined dis-
cretized domains or higher-order finite elements. Some techniques address the classical Finite Element Analysis
(FEA) to enhance performance. The Transformation Field Analysis (TFA) is one of them [1]. The TFA solves the
non-linear analysis by adding fundamental solutions based on the concepts of concentration and influence tensors
borrowed from the micromechanics analysis and applying the superposition principle.

The TFA is a procedure that decomposes the elastic strain field in a superposition of uniform eigenstrain
fields, exploiting the dependence of the subdomains displacement fields and its influence in the global field [1].
The TFA relates thermal and mechanical loadings even when the phases’ properties depend on the temperature
variation [2]. In the TFA approach, Dvorak proposes reducing the number of calculated variables, optimizing the
cost-benefit ratio of the simulation.

The superposition-based formulation can also be found in Dvorak [3], where uniform fields in a biphasic
medium can be assessed. In this work, the authors calculate the influence tensors based on unit eigenstrains and
define their relations with inelastic strains, considering an arbitrary geometry for the phases. They also restrict the
type of inclusions where uniform strain fields are available. Additionally, Benveniste and Dvorak [4] makes some
observations of the uniform field in composite materials. In the same year, Dvorak [5] expanded the formulation
for multi-phase composites, and a FEM-based approach for TFA is proposed in Dvorak et al. [6], wherein the first
comparison of classic FEA and TFA is investigated, and TFA shows good accuracy.

This investigation addresses the second challenge, analyzing the performance of the TFA-based Finite Ele-
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ment approach for elastoplastic analysis of periodic porous media. Evaluation of numerical case studies appraise
accuracy and computational cost for different discretizations, considering h and p refinements in FEA to assess
favorable scenarios for applying the technique.

2 Homogenization of Periodic Materials

Mechanical analysis of periodic materials under homogeneous loading is defined by the behavior of the
repeating unit cell, which consists of the pattern used to generate the whole material. The solution of the boundary-
value problem subject to periodic traction and displacement boundary conditions defines the macroscale response
of the material [7].

The unit cell should be well enough discretized to capture the microstructural details. Also, the displacement
field in subdomains is expressed in terms of macroscopic and local contributions using a two-scale expansion in
global and local coordinates,

u
(q)
i (x,y) = εijxj + ũ

r(q)
i (y), i = 1, 2, 3 (1)

where εij is the macroscopic strain field applied to the entire material and ũ
r(q)
i (y) is the local fluctuating dis-

placement in the qth subdomain for the rth phase. Accordingly, the strain field is also decomposed into average
and fluctuating parts ε(q)i (x,y) = εij + ε̃

r(q)
ij (y). FEA solution produces a set of equations for the parameters

defining the subdomain fluctuating displacement field of the form

Kũ = ∆Cε+G

(∫
V (q)

εp(q)dV

)
(2)

with ∆C having terms of the differences in the stiffness matrix, G contains volume integrals of the unknown
plastic strains over the subdomains and ũ represent nodal fluctuating displacements that are common to adjacent
subdomains, which depends only on the plastic strain field εp(q).

Solution of the system, coupled with homogeneous displacement field, determines the displacement in each
subdomain, wherein the volume-averaged strain in the qth subdomain can be evaluated as

ε(q) = A(q)ε+D(q) (3)

with A(q) and D(q) as the elastic strain concentration tensors [8] and inelastic influence tensors, respectively.
Based on these definitions, using subdomain stresses and strains through local constitutive equations

σ(q) = C(q)
(
ε(q) − εp(q)

)
(4)

we can evaluate the volume-averaged stress in terms of the volume-averaged subdomain stress

σ =
1

V

Nq∑
q=1

∫
Vq

σ(q)dV =

Nq∑
q=1

c(q)σ
(q) =

Nq∑
q=1

c(q)C
(q)
(
ε(q) − εp(q)

)
= C∗ (ε− εp) (5)

which is the homogenized Hooke’s law. The homogenized stifness matrix C∗ and plastic strain εp(q) can be
evaluated as

C∗ =

Nq∑
q=1

c(q)C
(q)A(q) (6)

εp = [C∗]
−1

Nq∑
q=1

c(q)C
(q)
(
εp(q) − D(q)

)
(7)

where εp(q) is the volume-averaged plastic strains in the qth subdomain.
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2.1 Transformation Field Analysis

Eigenstrains, from which TFA is based, is a mathematical concept and can represent some physical phe-
nomenon in the manufacture or operation of composite materials caused by thermal changes, variations in the
humidity of the phase material, or inelastic strains. It is essential to point out that the strains caused by stresses
superior to the material’s yield stress can be decomposed into its elastic and inelastic parts, and only the latter is
an eigenstrain. Also, for an incremental increase in the stress field, changes in the inelastic strain field depend on
the loading history.

The presence of eigenstrain µ(r) and eigenstress λ(r) in the rth phase affects the constitutive relationships as
follows

σ(r) = C(r)ε(r) + λ(r) ↔ ε(r) = S(r)σ(r) + µ(r) (8)

where λ(r) = −C(r)µ(r) and µ(r) = −S(r)λ(r) (9)

∴ σ(r) = C(r)[ε(r) − µ(r)] ↔ ε(r) = S(r)[σ(r) − λ(r)] . (10)

An interesting way of representing the local stress/strain fields in a heterogeneous media is to employ trans-
formation variables with uniform distributions, as proposed in Dvorak [3]. Thus, the volume-averaged strain and
stress in the rth phase can be evaluated as follows

ε(r) = A(r)ε+

N∑
s=1

D(r,s)µ(s) and σ(r) = B(r)σ +

N∑
s=1

F(r,s)λ
(s)

(11)

where A(r) and B(r) are the strain and stress concentration tensors for the rth phase, respectively. The tensors
D(r,s) and F(r,s) are called transformation influence tensors for strain and stress, respectively. They measure the
strain/stress in the rth phase caused by uniform eigenfields µ(s) and λ

(s)
in the sth phase applied in a model where

ε = 0 and σ = 0, respectively. The influence tensors D(r,r) and F(r,r) indicate self-induced influences in the
analysis. In biphasic materials (matrix and inclusions of the same type of material), the influence tensors can be
calculated as

D(r,m) =
(
I−A(r)

)(
C(m) −C(i)

)−1

C(m) (12)

D(r,i) = −
(
I−A(r)

)(
C(m) −C(i)

)−1

C(i) (13)

F(r,m) =
(
I−B(r)

)(
S(m) − S(i)

)−1

S(m) (14)

F(r,i) = −
(
I−B(r)

)(
S(m) − S(i)

)−1

S(i) (15)

for r = m, i.
Transformational influence tensors have emerged as an alternative for evaluating inelastic behavior caused by

different types of loads. Coupling with Finite Element Analysis (displacement formulation) involves the evaluation
of strain concentration and influence tensors for each finite element. The main advantage is that these tensors are
evaluated just once, allowing for inelastic analysis in various situations (different loadings).

2.2 Elastoplastic Analysis

Evaluation of the elastic strain concentration and plastic influence tensors permits calculation of the homog-
enized elastic-plastic behavior of a periodic material for all loading steps. Assessment of the mechanical behavior
is done by successive integrations in incremental form of the homogenized plastic strains using the localization
equations. The homogenized plastic strain increment is given as

dεp =

Ne∑
e=1

c(e)B
(e)dεp(e) (16)
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where the elastic stress concentration tensor is evaluated by B(e) = [C∗]
−1 [

A(e)
]T

C(e) and the local plastic
strain increment dεp(e) is determined by plasticity theory with isotropic hardening employing Mendelson’s refor-
mulation of the Prandtl-Reuss Equations in terms of the strain deviators e′ij [9].

dε
p(e)
ij =

(
eij

′

eeff

)(e)

dε
p(e)
eff where (17)

eeff =

√
2

3
ē′ij ē

′
ij and (18)

ē′ij = ε̄ij −
1

3ε̄kk
δij − ε̄pij |previous . (19)

with ε̄pij |previous being the plastic strains of the previous load step. The effective plastic strain increment is

dε
p(e)
eff = e

(e)
eff −

σ
(e)
eff

3µ
(20)

where σ
(e)
eff is the effective von-Mises stress in the element e. The load history is defined by homogenized strain

increment dε, and the subdomain plastic strains are calculated iteratively using the method of successive elastic
solutions proposed in Mendelson [9], decomposing uniform subdomain plastic strains in previous and incremental
parts

ε̄
p(e)
ij = ε̄

p(e)
ij |previous + dε̄

p(e)
ij . (21)

3 Results

The elastoplastic analysis of periodically perforated metal sheets was carried out employing the concepts
discussed in the previous sections to analyze the TFA’s capabilities. It should be noted that a similar analysis can
be seen in Cavalcante and Pindera [10] but for a different numerical approach. All analyzes were performed in
a Matlab 2019a environment [11] with an Intel Core i7-7700HQ processor running at 3.80 GHz with 16 GBs of
RAM.

The perforated metal sheet presents circular holes distributed in a hexagonal array with a volume fraction
of 25%. Discretizations disposes the elements along the angular and radial directions: 30x5 (150 elements) and
90x15 (1350 elements). Figure 1 shows the discretizations for quadrilateral elements.

(a) 30x5. (b) 90x15.

Figure 1. Discretizations of the unit cell.

The strain hardening of the aluminum matrix is described by a power-law hardening, which takes the form

σeff = σy +Hp

(
εpeff

)n
(22)

where σy is the yield stress, Hp is the strain-hardening slope and n is the exponent of the power-law. Elastic and
plastic parameters of the aluminum alloy employed in the perforated sheet studies: E = 72.7 MPa, ν = 0.34,
σy = 240MPa, Hp = 457.589MPa, n = 0.4218.
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The study employs linear, quadratic and higher-order quadilateral lagrangian elements for both meshes. The
higher-order quadrilateral element is a five-degree Lagrangian interpolation with 36 nodes each. The higer-order
element can represent more complex strain fields, delivering better results than the quadratic element with less dis-
cretization. However, it is noteworthy that the number of nodes increases significantly. Table 1 shows a comparison
between the number of nodes for each of the adopted meshes. With this higher-order element, it was possible to
verify the influence of node density per element in the analyses.

Table 1. Number of elements and nodes per discretization.

Discretizations

30x5 90x15

Elements 150 1350

Nodes (Linear Element) 180 1440

Nodes (Quadratic Element) 660 5580

Nodes (Fifth-Order Element) 3900 34200

All models were subjected to periodic boundary conditions and macroscopic loadings to reflect uniaxial
tension scenario. The load was applied in 30 equal increment steps until reaching homogeneous strain of 3%. The
TFA results are compared with the classical Finite Element Analysis.

The results are presented below considering uniaxial tension scenario, Figure 2. The analyses were carried
out as follows: comparing models employing the same finite element but with different mesh discretizations. Thus,
the objective was to highlight the influence of the mesh discretization for the same type of finite element and the
order of the employed finite element.

Figure 2. Uniaxial tension.

Figure 3 shows the results of the models with all meshes using the linear, quadratic and high-order elements.
The TFA data is compared with classical FEA results.

Table 2 shows the relative differences between the classical FEA and TFA for the same finite element and
discretization (number of elements). Because TFA approximates stress/strain fields assuming uniform distribution
per element, it was expected that TFA results would converge with FEA results for higher levels of discretization
because it can capture the localized plastic strain field. The quadratic finite element presented similar results
compared with the fifth-order finite element.

Higher-order finite elements give a less stiff macroscopic response for TFA because they can more correctly
capture the localized field when a uniform eigenstrain is imposed per element. For the coarsest meshes, the
maximum relative difference was lower than 10% for the macroscopic strain of 3%, and for the most refined
meshes, the relative differences were less than 1.5%.

The effective plastic strain and stress distributions are presented for the 90x15 meshes of linear, quadratic,
and fifth-order finite elements (Figure 4). These fields present uniform averaged distributions per element to
compare the results obtained by classical FEA and TFA approaches more directly. For this level of discretization,
the localized response obtained by TFA is as good as the localized response obtained by classical FEA for all the
analyzed finite elements.

Also, processing time for all simulations are presented in Table 3. The processing time table can be explained
by FEA’s and TFA’s bottleneck: while the first is the solution of linear systems (which is related with the number
of the global degrees of fredom), the latter is summation (which is related with the number of elements).

For linear elements and high level of discretization, the computational cost of the summation is more signif-
icant than the solution of the global system of equations. TFA’s advantage can be observed for higher-order finite
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(a) 30x5 (b) 90x15

Figure 3. Macroscopic stress-strain curve for different discretizations.

Table 2. Relative differences between FEA and TFA.

Uniaxial Tension

Macroscopic Strain 0.5% 1% 1.5% 2% 2.5% 3%

Q4 30x5 1.11% 2.35% 3.26% 4.06% 4.77% 5.40%

Q4 90x15 0.16% 0.40% 0.61% 0.81% 0.98% 1.14%

Q9 30x5 1.42% 2.35% 3.10% 3.70% 4.22% 4.68%

Q9 90x15 0.17% 0.34% 0.49% 0.61% 0.73% 0.83%

Q36 30x5 1.44% 2.28% 3.02% 3.62% 4.13% 4.58%

Q36 90x15 0.18% 0.34% 0.48% 0.60% 0.72% 0.82%

(a) FEA-Q4 (b) FEA-Q9 (c) FEA-Q36

(d) TFA-Q4 (e) TFA-Q9 (f) TFA-Q36

Figure 4. Effective plastic strain field for classical FEA and TFA approaches.

elements when the summation is cheaper than the solution of the global linear system of equations. This fact can
be seen in 90x15 discretization using Q36 elements, where TFA’s time is much smaller.
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Table 3. Processing time for all analysis.

Q4 30x5 Q4 90x15 Q9 30x5 Q9 90x15 Q36 30x5 Q36 90x15

TFA 49.89 3675.68 39.39 3532.39 21.49 1716.95

FEA 45.42 440.60 80.08 821.66 366.48 6024.10

4 Conclusions

The relationship between the discretization of the mesh and the stiffness of the FEA result is well known. This
relation is associated with the element capacity to represent the local deformation: the deformation representation
is simplified by decreasing the element size, demanding less from the finite element to represent the local response.

The coupling of TFA with higher-order finite elements improves the concordance with the classical FEA
results. However, the employment of higher-order finite elements must be integrated with a suitable discretization
of the mesh. The mesh refinement is more critical in obtaining better results with TFA than the application of
higher-order finite elements. Best results were achieved for the fifth-order element in 90x15 mesh, where the
maximum error was smaller than 1% using less than a third of the time in the analysis.

Thus, capturing the localized plastic strains by a refined mesh is more critical than the tendency to obtain
stiffer results due to the limitation of the finite element to represent the local response when a lower-order finite
element is employed.
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