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Abstract. In the context of oil and gas (O&G) exploitation, risers are slender structures connecting the floating
unit to the seabed. These structures experience static and dynamic loads with potentially high nonlinearities. It is
relevant for O&G industry to understand the riser’s mechanical behavior to improve the structure life and predict
failures. In this sense, this work focuses on the analysis of the dynamical behavior of a vertical riser (represented
as a vertical beam) under harmonic excitation in the top, standing for the oscillation of a floating unit. Depending
on the structure’s mechanical properties and on the load frequency, the parametric excitation phenomenon can
take place, yielding large-amplitude lateral motion even for small vertical displacements. More specifically, the
focus is on the Mathieu’s instability regions, which occurs when the excitation frequency is an even multiple of
the structure natural frequency. In this work, we establish a simplified analytical approach using a reduced order
model (ROM), which considers an Euler-Bernoulli beam model undergoing small rotation. For this purpose, the
equations of motion are obtained using the extended Hamilton’s principle (EHP). By applying Galerkin’s method
using three sinusoidal shape functions and considering a time-spatial split, ROM’s non-dimensional final equations
can be obtained. Next, an in-house nonlinear FEM-based solver, called Giraffe (an acronym for “Generic Interface
Readily Accessible For Finite Element”) is presented and some comparative examples are performed using the
ROM and the Giraffe, observing their differences and similarities. These case studies were performed considering
the structure immersed in water and air, and the excitation frequency is varied to evaluate the first and the second
Mathieu’s instability region. The results presented good agreement in both models, with, in general, slightly larger
displacements for the ROM models.
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1 Introduction

Parametric excitation is a phenomenon that occurs when one or more parameters of the equations of motion
have an explicit dependence on time [1]. When this dependency takes place in the stiffness coefficient of the
equation of motion, we have Hill’s equation and if the stiffness time-dependency is harmonic, it is called Mathieu’s
equation.

Such a family of equations has been used to investigate some offshore engineering applications, like vertical
risers (slender tubular structures that transport oil and gas from the seabed to floating units) and tethers of tension
leg platforms (TLPs). In the last decades, many books (see e.g.: [2, 3]) and articles have invested efforts to
evaluate the dynamic response of these slender structures not only with analytical and numerical approaches [4–
6], but also with experimental analyses [7]. The Mathieu’s instability phenomenon is also a research topic in
the offshore bibliography [8, 9], with a practical interest in the principal instability, which is defined when the
excitation frequency is double of the natural frequency.

It is known that the lateral motion of cables is well-described by Bessel functions. Vernizzi et al. [1] compared
the usage of “Bessel-like” and trigonometric functions and pointed that the usage of a single “Bessel-like” function
as a shape function, simplify results attainment like the post-critical amplitude map with less computational effort,
despite the greatest mathematical difficulty in the model. In the literature one can found many works using a set of
trigonometric functions [5, 10] and others “Bessel-like” [1, 11] as shape functions.
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Present work starts with a brief description of the mathematical model (deeper discussions about it were made
by Mazzilli et al. [10]), followed by the ROM’s derivation with some highlights (more details can be found, with
small differences, in Franzini et al. [7], Franzini and Mazzilli [12]) and case studies with the Giraffe and the ROM
for the two first Mathieu’s instability regions.

2 Mathematical Model

The model studied is illustrated in Figure 1. Considering a Bernoulli-Euler formulation under small rotation
hypothesis, the strain ε and its variation δε at a generic point p are given by:

ε = w′ − xu′′ +
1

2
(u′)2 = ε− xu′′, (1)

δε = δw′ − xδu′′ + u′δu′, (2)

where (·)′ = ∂(·)
∂z , (·)′′ = ∂2(·)

∂z2 and ε is the axial strain. The term 1
2 (u

′)2 takes into account the structure extensi-
bility.




௧

Figure 1. Representation of the vertical riser subject to an excitation at the top

Similarly to what is done by Mazzilli et al. [10] and in Franzini and Mazzilli [12], by applying the Extended
Hamilton’s Principle (EHP), one can obtain the coupled system of equations of motion given by:

µü+ EIu′′′′ + cu̇− EA

(
(u′w′)

′
+

3

2
(u′)

2
u′′
)

= 0 , (3)

µẅ + γ − EA (w′′ + u′u′′) = 0 , (4)

where EI is the bending stiffness, EA is the axial stiffness, µ is the linear mass, c is the structural damping
coefficient and γ is the submerged weight. It is important to mention that the structural damping is assumed to be
derived from a Rayleigh dissipation function (proportional to velocity) and acting only in the lateral direction.

Before the dynamic excitation, a static problem defines the pretension, which gives its geometric stiffness.
Therefore, the motion and tension can be separated in static and dynamic terms, denoted by superscript S and D,
respectively. The natural boundary condition for the static problem, defines the static top tension, TS

L :

TS(L) = TS
L = EA

(
w′ +

1

2
(u′)2

)
= EAε . (5)

Disregarding the inertial term and integrating eq. (4), it is possible to calculate the axial strain, ϵ0 by an average
procedure [1, 10]:
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ϵ0(t) = ϵ0 =
wL − w0

L
+

1

2L

L∫
0

(u′)2dz − γL

2EA
. (6)

The displacement also can be divided into a static and a dynamic component, wS and wD, respectively. Consider-
ing only the static problem (a vertical displacement at the top of wS

L and no movement in the transverse direction)
one can integrate the eq. (4) with respect z and, using the essential boundary condition w(0) = 0, obtain the static
top displacement:

wS
L =

γL2

2EA
+

(TS
L − γL)L

EA
. (7)

Substituting eqs. (6)-(7) in eq. (3) and adding the hydrodynamic forces in the right-hand side (as done by other
authors [1, 7, 11, 12]), it is possible to obtain a single equation to describe the lateral motion:

µü+ c1u̇+ EIu′′′′ − γu′ − u′′T (z)− EA

L
wD

L u
′′ − EA

2L
u′′

L∫
0

(u′)2dz = −µaü− 1

2
ρDCd |u̇| u̇. (8)

where was used Morison’s equation in the right-hand side to describe the hydrodynamic forces. Thus, there is a
term in phase with the acceleration (added mass, with coefficient µa) and a quadratic viscous drag (with coefficient
Cd). Also, ρ is the specific weight of the water and D is the structure diameter.

2.1 Reduced Order Model (ROM)

The ROM is constructed assuming a temporal-spatial separation of the response and using three modes to ap-

ply Galerkin’s method. Thus, the lateral motion is given by u =
3∑

k=1

Ak (t)ψk (z), where Ak (t) is the generalized

coordinates and ψk (z) stands for the shape functions. In this work, in order to achieve more algebraic simplicity,
it is used a set of three sinusoidal functions ψk(z) = sin

(
kπ
L z
)
, with k = 1, 2, 3.

Substituting the proposed solution u to eq. (8) and applying the Galerkin’s method (for details see [5, 12]) it is
possible to obtain a non-dimensional system of differential equations, which solution describes the ROM motion:

d2Â1

dτ2
+ α1

dÂ1

dτ
+ (δ1 + ϵ1 cos(nτ))Â1 + α2Â2 + α3Â

3
1 + α4Â

2
2Â1 + α5Â1Â

2
3 +

ΛM

L∫
0

∣∣∣∣∣dÂ1

dτ
ψ1 +

dÂ2

dτ
ψ2 +

dÂ3

dτ
ψ3

∣∣∣∣∣
(
dÂ1

dτ
ψ1 +

dÂ2

dτ
ψ2 +

dÂ3

dτ
ψ3

)
ψ1dz = 0 , (9)

d2Â2

dτ2
+ β1

dÂ2

dτ
+ (δ2 + ϵ2 cos(nτ))Â2 + β2Â3 + β3Â1 + β4Â2Â

2
1 + β5Â

3
2 + β6A2Â

2
3 +

ΛM

L∫
0

∣∣∣∣∣dÂ1

dτ
ψ1 +

dÂ2

dτ
ψ2 +

dÂ3

dτ
ψ3

∣∣∣∣∣
(
dÂ1

dτ
ψ1 +

dÂ2

dτ
ψ2 +

dÂ3

dτ
ψ3

)
ψ2dz = 0 , (10)

d2Â3

dτ2
+ γ1

dÂ3

dτ
+ (δ3 + ϵ3 cos(nτ))Â3 + γ2Â2 + γ3Â3Â

2
2 + γ4Â3Â

2
1 + γ5Â

3
3 +

ΛM

L∫
0

∣∣∣∣∣dÂ1

dτ
ψ1 +

dÂ2

dτ
ψ2 +

dÂ3

dτ
ψ3

∣∣∣∣∣
(
dÂ1

dτ
ψ1 +

dÂ2

dτ
ψ2 +

dÂ3

dτ
ψ3

)
ψ3dz = 0 , (11)

where ω1 is the first-mode frequency of the immersed riser and µd = ρπD2/4 is the water mass per unit length
displaced by the riser. Also, the non-dimensional quantities are: τ = tω1, n = Ω

ω1
, Âk = Ak

D , Ca = µa

µd
, µ = µa

µd

and ΛM = D
Lµd(µ+Ca)

ρCd. In this way, the parameters of the ROM are showed in Table 1 and eqs. (12)-(13):
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Table 1. Parameters of the ROM

α1 = c
µd(µ+Ca)ω1

β1 = α1 γ1 = α1

α2 = − 40γ
9Lµd(µ+Ca)ω2

1
β2 = − 312γ

25Lµd(µ+Ca)ω2
1

γ2 = β2

α3 = d2EA
4µd(µ+Ca)ω2

1

(
π
L

)4
β3 = α2 γ3 = 9d2EA

µd(µ+Ca)ω2
1

(
π
L

)4
α4 = d2EA

µd(µ+Ca)ω2
1

(
π
L

)4
β4 = α4 γ4 = α5

α4 = 9d2EA
4µd(µ+Ca)ω2

1

(
π
L

)4
β5 = d2EA

4µd(µ+Ca)ω2
1

(
2π
L

)4
γ5 = d2EA

4µd(µ+Ca)ω2
1

(
3π
L

)4
- β6 = γ3 -

ϵk =
EA

L

(
kπ

L

)2
At

µd (µ+ Ca)ω2
1

, (12)

δk =
EI

µd (µ+ Ca)ω2
1

(
kπ

L

)4

+

(
kπ

Lω1

)2(
2TS

L − γL

2µd (µ+ Ca)

)
. (13)

Despite the hydrodynamic damping, all the parameters are given by algebraic expressions, so they can be
easily computed. To calculate these damping terms in eqs. (9)-(11), the model was discretized in 500 points along
the span and the position of each one is evaluated at each time and each spanwise position, zd. Thus, defining
g(zd, τ) = dÂ1

dτ ψ
d
1+

dÂ2

dτ ψ
d
2+

dÂ3

dτ ψ
d
3 it is possible to evaluate a new function fi(zd, τ) =

∣∣g(zd, τ)∣∣ g(zd, τ)ψi(z
d)

for each hydrodynamic term in eqs. (9)-(11), using even a simple rectangular rule.

2.2 Finite Element Model – Giraffe

Giraffe implements a multibody dynamics framework, encompassing finite elements and rigid body formula-
tions. To describe the rotations, the chosen vector parameterization is the Rodrigues rotation vector (see Gay Neto
[13]). Present work uses Giraffe beam model, a Timoshenko geometrically exact formulation, with hydrostatic and
hydrodynamic contributions, as described in detail by Gay Neto [6].

Giraffe input is based on text files. Thus, constructing many inputs for multiple cases can be laborious work.
To help with that, a preprocessor tool, coded in C++, was used. It receives very little information about the model
(such as length, specific mass, environment data), constructs the FEM model, and calls Giraffe to solve it.

3 Results

A special focus is given to the principal Mathieu’s instability, when n = Ω/ω1 = 2. The lateral motion
of three highlighted points (at 1/4L, 1/2L, 3/4L), the amplitude spectra, and the top tension time series were
compared between the ROM and FEM results, considering non-immersed and immersed simulations. The present
case study is based on the model already studied, with slightly different formulations, by Franzini and Neto [5],
Franzini and Mazzilli [12] - which are based on a scaled model of an 8 in. commercial pipe studied by Franzini
et al. [7].

The riser general properties are presented in Table 2. The gravitational field acceleration g is 9.81 m/s2, the
fluid specific mass ρ is 1025 kg/m3, and the top vertical motion amplitude At is 0.02552 m. With these values
and defining wS

L = 0.05m, from eq. (7) one can evaluate the static top tension TS
L . Then, it is possible to evaluate

the natural undamped frequency of the first mode from eqs. (9) and (13) - like done by Franzini and Mazzilli [12].
For the Giraffe model, this setup is easily done by defining a beam of initial size L and then prescribing

a known displacement at the top of wS
L. Next, a modal analysis is performed and the natural frequencies can be

evaluated. Finally, a structural damping of 1% is defined for each model. For the ROM, it was assumed a logarithm
decrement and for the FEM, a Rayleigh damping with a null mass coefficient (α = 0). Table 3 summarizes the
parameters for the ROM and FEM models, in water and air. For the ROM, the eqs. (9)-(11) were integrated using
a Runge-Kutta method present in Matlab, with a time step of τ = 0.02. The FEM was integrated with a Newmark
scheme (which details can be read in Gay Neto [13]), using a high numerical damping (γ = 0.3 and β = 0.6) and
a time step of t = 0.02 s. The results are presented in Fig. 2.

First, a very good agreement between ROM and FEM results for both cases, immersed or in air, should be
noted. Also, the effect of the hydrodynamic is well captured by the two models. Note that we adopted different
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Table 2. General properties for the simulations

Property Value

External diameter, D 22.2 mm

Unstretched length, L 2.552 m

Bending stiffness, EI 0.056 Nm2

Axial stiffness, EA 1200 N

Linear mass, µ 1.19 kg

Table 3. Models specific parameters

Model Property Air Water

Both TL [N ] 38.41 33.44

ROM
ω1 [rad/s] 5.48 4.75

c [Ns/m] 0.1305 0.1130

FEM
ω1 [rad/s] 5.09 4.58

β 0.00393 0.00437

(a) Lateral displacement at L/4 (b) Generalized coordinates from case in air

(c) Lateral displacement at L/2 (d) Generalized coordinates from case immersed in water

(e) Lateral displacement at 3L/4 (f) Top tensions

Figure 2. Results for n = 2

excitation because our main goal here is to explore the Mathieu’s instability. Thus, in a real case or with experi-
mental data, when one should use the same input data in both models, the results can be slightly different because
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of this difference in the natural frequencies. Vernizzi et al. [11], Franzini and Mazzilli [12] gives an idea of the
expected behavior for different frequencies of excitation.

For n = 2, it is expected a first mode-like motion. This is reflected in the time series and spectra of the
monitored points of the structure, but also in the generalized coordinates, Ai. Besides the noticeable dominance
of the A1 with the natural frequency (f/f1 = 1), a curious contribution of the frequency f/f1 = 3 is presented in
both environmental conditions (structure in water and air) and not only for A1.

Next, the second region of instability, n = 4, is simulated. For this case, we used the double of the frequencies
presented in Table 3 - like mentioned by Franzini et al. [7]. Some cycles of motion are presented in Fig. 3, both
ROM and FEM models, showing a good agreement between them. As expected, the structure vibrates with the
shape of the second mode. Note a slightly flattening (effect of the traveling wave) in the motion due to the
hydrodynamics, most recognizable in the FEM time series. Also, the locus of minimum motion along the beam
span for the FEM simulation is placed a little further down than the ROM’s one.

(a) ROM - in air (b) FEM - in air

(c) ROM - in water (d) FEM - in water

Figure 3. Scalograms for n = 4

4 Conclusions

This work presents some minor differences in the non-dimensional quantities of the ROM’s equations from
the formulations using three harmonic shape functions found in literature Franzini and Neto [5], Franzini and
Mazzilli [12]. Although this had shown to have a small impact on the final results. For the case of the structure
in air and n = Ω/ω1 = 2, the present work showed a good agreement between FEM results, which shows
a complementary view from what was presented by seeing Franzini and Neto [5]. For the immersed case, the
hydrodynamic effect seems to minimize the, already small, difference - see Franzini and Mazzilli [12].

The hydrodynamics was well described for both models (FEM and ROM) and excitations evaluated (n = 2
and n = 4). The hydrodynamic damping reflects in the final displacement time series, but it is also noticeable in
the generalized coordinates Ai, causing larger flattening in its curves than in the displacements.

Regarding to the Ai of the excitation n = Ω/ω1 = 2 it is notable a clear dominance of A1 in all simulations.
But a contribution of the other coordinates, mainly A2, is presented in all cases with non-negligible amplitudes,
which is expected, due to the choice of harmonic shape functions over “Bessel-like” functions [1, 11]. This effect
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is also seen in the results for n = 4, where one can note the locus of minimum motion along the riser span of the
results obtained from the FEM model is located slightly below the one obtained via ROM.
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