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Abstract. This work presents a numerical model for the analysis of arbitrarily-shaped 3D structures, under time-
harmonic loading, supported by the soil surface. The structure is modeled with the finite element method, and the
soil is modeled by the indirect boundary element method. The present formulation uses superposition of Green’s
functions for loads distributed over rectangular areas to obtain stress and displacement fields anywhere in the
soil. The use of a boundary element-based formulation makes this model capable of representing accurately wave
propagation in the soil and of complying with Sommerfeld’s radiation condition, and avoids truncation problems
and computational cost issues that would result from different methods. Coupling between the elements of the
structure and of the soil is established by imposing equilibrium and continuity conditions at their interface. This
results in an equation of motion of the soil-structure system, written in terms of nodal displacements and forces of
the structure, and involving the effect of soil flexibility. A representative example of a tower interacting with the
soil is analyzed.
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1 Introduction

Despite being over 130 years old [1], the derivation of soil-structure interaction models is still a vibrant field
of study [2]. In view of their practical applications in civil engineering, many models assume it to be sufficient to
describe the interaction between soil and structure via linear or nonlinear spring approximations, or via full finite
element discretizations. These go as far as modeling sophisticated problems such as anisotropic nano-inclusion
problems [3] and topology optimization [4, 5]. While reasonable approximations from the point of view of the
structure, these models are inadequate to describe the interaction between structures through the soil [6] and soil
wave propagation phenomena [7], especially the cases in which excitations arise from the soil [8], rather than from
the structure. This is because Winkler-Pasternak and finite element discretizations typically disregard important
characteristics of the soil as a wave-propagating medium. Classical difficulties are their failure to comply with
the Sommerfeld radiation condition [9], the need for physically-inconsistent truncation of the soil’s unbounded
domain [10], and inadequately representation of wave propagation in the soil in terms of waveguides [11], among
other difficulties [12]. This is in addition to the classical parameter-identification hurdle of Winkler-Pasternak type
of approximation [13].

More adequate models in this regard involve some type of boundary element scheme for the soil part, while
classical finite elements can be used for the bounded-domain structure that it supports. The authors of this paper
have invested in this line of work in the past decade. Models resulting from this investment have contributed to our
understanding of buried foundations [14–18], have resulted in novel Green’s functions with which to model the
soil [19–24], and in numerical integration schemes to deal with the intricacies of the integrands of these Green’s
functions [25–27]. On top of complying with Sommerfeld’s Radiation Condition, these models also accurately
accounting for inertial properties of buried bodies, represent wave propagation through the soil and between struc-
tures, and enable computationally-efficient large-scale analyses.

This paper reports on our most recent advances in modeling dynamic soil–structure interaction through
boundary- and finite-element coupled schemes. The work presents a method for the analysis of arbitrarily-shaped
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three-dimensional structures on the surface of the soil, subjected to time-harmonic loads. The structure is modeled
with classical finite elements, while the soil is modeled via superposition of Green’s functions, in the sense of the
Indirect-Boundary Element Method (IBEM).

1.1 Statement of the problem

Consider an arbitrarily-shaped, linear-elastic, isotropic, three-dimensional structure with Young’s modulus
Es, Poisson ratio νs, and mass density ρs. The structure is in perfectly bonded contact with a homogeneous,
isotropic, linear-viscoelastic, three-dimensional half-space with Young’s modulus E, Poisson ratio ν, and mass
density ρ. Time-harmonic external loads can be considered to be applied anywhere in the body of the structure.
The problem consists in determining the dynamic response of the structure to these loads.

Figure 1. Arbitrarily-shaped structure interacting with the soil.

2 Formulation

The title problem is solved via a coupled IBEM-FEM method, in which the structure and the soil are modeled
separately via finite and boundary elements, respectively, and their coupled interaction is obtained by enforcing
continuity and equilibrium conditions at their interface.

2.1 Formulation of the structure

The structure is discretized via linear-elastic, eight-noded isoparametric hexahedral finite elements, with three
degrees of freedom per node, corresponding to the displacements in x−, y−, and z−directions. The stiffness and
mass matrices of this element are given respectively by [28]:

ke =

∫
Ve

BTDBdVe =

∫ 1

−1

∫ 1

−1

∫ 1

−1
BTDB det(J)dξdηdζ (1)

me =

∫
Ve

ρNTNdVe =

∫ 1

−1

∫ 1

−1

∫ 1

−1
ρNTN det(J)dξdηdζ (2)

in which Ve is the volume of the element, D is the constitutive matrix of the element, N and B are the matrix of
shape functions and the matrix of their derivatives, ρ is the mass density, and J is the Jacobian of the transformation
that relates the physical and natural domains. The inertial stiffness matrix of the structure (Ks) for an excitation
frequency ω is given by:

Ks = KG − ω2MG, (3)

in which KG and MG are the global stiffness and mass matrices, assembled from ke and me through the classical
finite element assembly procedure [28]. The equilibrium equation for the structure subjected to harmonic external
excitation in terms of nodal quantities is given by:

fs = Ksus, (4)

in which us and fs are respectively the nodal displacement and force vectors.
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2.2 Formulation of the soil

A boundary element framework is used to model the soil in this analysis. This framework resorts to superposi-
tion of non-singular Green’s functions (“influence” functions) to obtain the displacement fields at the structure–soil
interface. The surface of the soil is discretized into M boundary elements, which is the same number of finite ele-
ments of the mesh of the structure in the structure–soil interface. Considering the hexahedral elements with which
the structure is discretized, rectangular boundary elements are used in this case. Since this paper considers interac-
tion of the structure with the surface of the soil, rather than partially or fully-buried structures, only displacement
solutions are necessary in this model. Any displacement influence function for rectangular elements can be used
in this part. Example of possible solutions are those by Willner [29], Dydo and Busby [30], and Becker and Bevis
[31], which are mostly based on direct analytical integration of the Boussinesq [1] and Cerruti [30] solutions for
point loads over the area of the element. In this paper, however, we have chosen to use the influence functions
derived by Kausel [32], because it is easily extensible to model layered, anisotropic, and porous soil media. The
general expression for the displacement of the half-space in the m−direction due to loads in the n− direction
(m,n = x, y, z) is given in terms of double Fourier integrals to be evaluated numerically:

umn(x, y, ω) =

(
1

2π

)2 ∫ +∞

−∞

∫ +∞

−∞
Gmnpn exp

−ikxx exp−ikyy dkxdky. (5)

The terms involved in the integrand of Eq. 5 are given by Kausel [32]. The evaluation of these influence functions
is the most difficult and time-consuming numerical task in this model. Singularities corresponding to the kx and
ky wave numbers are present even in the homogeneous soil case considered in this article. An oscillatory-decaying
tail is observed for large values of kx and ky . In the present implementation, a combination of techniques is
used to address these problems. The first is the incorporation of a small damping factor in the elastic constants,
according to Christensen [33]. This takes the singularities out of the real integration path, just enough to allow their
subsequent integration through adaptive Gaussian quadratures [34]. The oscillatory-decaying tail is integrated with
robust extrapolation techniques [35, 36]

2.3 Soil-structure coupling scheme

The coupling between the elements of the structure and of the soil meshes described above is established by
imposing equilibrium and continuity conditions at their interface. In the present model, the dynamic equilibrium
equation of motion at the structure–half-space interface is a modification from Eq. 4, with the incorporation of the
contact forces f due to the presence of the half-space:

Ksus = fs − f. (6)

In this equation, the soil contact forces contained in f are written in terms of nodal equivalents with respect to
the nodes of the structure. Therefore, there is an inconsistency between the order of soil elements, which assume
constant distribution of forces through the area of the element, and the order of the elements of the structure, which
have bilinear interpolation between the four nodes of each of its faces. This difference is illustrated in Fig. 2

Figure 2. Difference in order between finite and boundary elements at the structure–half-space interface.

In this work, f is approximated by piece-wise constant tractions q, which are the uniformly-distributed trac-
tions acting at the boundary elements of the half-space. f and q are related through f = Aq, in which A is a purely
geometric transformation matrix, responsible for mapping constant boundary element tractions q into their finite
element nodal equivalent f . The equilibrium equation then becomes

fs = Ksus +Aq. (7)
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Similarly, displacement influence functions computed from Eq. 5, which are measured at the center of each
boundary element, have incompatible dimensions with respect to the four nodes of the finite element of the mesh
of the structure. They can be related through another purely geometric transformation matrix D, such that

u = Dus. (8)

In view of Eq. 8, the continuity condition at the tower–half-space interface yields

Dus = Uq, (9)

in which U is the influence matrix of the half-space, comprising all pairs uijmn, in which j and i indicate the
boundary element in which the load is applied (in the n−direction) and the element in which its effect is measured
(in the m−direction), respectively. The terms of U are computed from Eq. 5. Equation 9 comprises the perfectly-
bonded condition between the structure and the soil. Barros et al. [14] showed how other bonding conditions may
be incorporated into this formulation. Carneiro et al. [8] provided expressions for transformation matrices A and
D, which can be directly extended to the present case. Equations 7 and 9 comprise the equilibrium equation for
the coupled structure–half-space system: Ks A

D −U

 us

q

 =

 fs

0

 . (10)

This formulation can be easily modified to encompass excitation in the form of seismic waves as well. In
this case, ground motion due to arbitrary seismic waves are incorporated in terms of nodal displacements into us,
rather than in terms of nodal forces. For examples of this case, refer to Labaki et al. [15] and Carneiro et al. [8].

3 Numerical results

The correctness of the present implementation has been check by thorough comparisons with limiting cases
from the literature.

This section shows selected results for the representative case of the dynamic response of a prismatic tower
interacting with the soil. The tower has sides a × a and height 15a, and material properties such that Es = E,
ρs = 2ρ, and νs = ν, which are common values in engineering practice. Uniformly-distributed horizontal loads
F are applied to the top surface of the tower. Figure 3 shows the response of the tower in terms of the normalized
displacement uix = uix/F , (i = x, z), in which uix is the displacement of the center of the top surface of the
tower in the i−direction due to loads in the x−direction, and in terms of the normalized frequency of excitation
a0 = ωa/cs, in which c2s = 2E (1 + ν) /ρ is the shear wave speed in the half-space. These results show for
comparison the response of the tower under prescribed zero-displacement boundary conditions at the bottom of
the tower.

Figure 3. Frequency response function of the tower for the fixed-base case and the soil support case.

The effect of the presence of the soil is the reduction of the resonant frequencies of the tower, which is more
noticeable beginning at the second resonant frequency of uzx. These effects are physically consistent, due to the
geometric damping characteristic of soil media. Figure 3 shows that direct displacement component (Figs. 3a) has
significantly higher amplitudes than their cross displacement counterpart (Fig. 3b), which is physically consistent.
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4 Conclusions

This paper introduced a novel numerical model of dynamic soil-structure interaction for three-dimensional
problems. An IBEM-FEM coupling scheme was used, which is based on finite- and boundary-element discretiza-
tions for the structure and soil parts, respectively. The paper discussed a strategy to deal with the fact that the
elements at the structure–soil interface have different orders. Selected numerical results were presented to show
that the implementation of the proposed method yields physically consistent results.

Authorship statement. The authors hereby confirm that they are the sole liable persons responsible for the au-
thorship of this work, and that all material that has been herein included as part of the present paper is either the
property (and authorship) of the authors, or has the permission of the owners to be included here.
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