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Abstract. This article presents original Green’s functions that can used to model bounded and unbounded prob-
lems through boundary discretization and meshless methods. Time-harmonic loads are applied within rectangular
patches within isotropic, three-dimensional full-spaces. The coupled differential equations describing the problem
are solved with the aid of double Fourier transforms. A boundary-value problem corresponding to horizontal and
vertical loads with bi-quadratic distribution over the loaded area is considered. The final stress and displacement
fields are expressed in terms of double Fourier integrals to be evaluated numerically. These non-singular Green’s
functions can be thought of as bi-quadratic boundary elements, to be used within direct and indirect boundary
element formulations.
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1 Introduction

Influence functions are solutions for linear differential equations and a fundamental part of some numerical
methods, particularly those based on boundary integral equation discretizations. Influence functions, of which
Green’s functions are a particular case corresponding to point loads, have been used to model a variety of problems
in elastodynamics, such as buried pile groups [1], crack propagation [2], and composites [3]. Analyses of a certain
medium through boundary element formulations require the corresponding influence function for that medium to
be available or derived.

An example of such influence function, corresponding to 3D full-spaces under uniformly distributed time-
harmonic loads, has been introduced by the authors of this article [4–7]. Those displacement and stress solutions
may be used in boundary element formulations using constant or linear elements, or superposition schemes consid-
ering spatially-constant load distribution [8]. However, constant or linear element discretizations typically require
a large number of elements to be used, and are often inadequate to represent steeper loading variations [9].

This article presents novel stress and displacement solutions within a full-space under time-harmonic external
loads. The full-space is a three-dimensional, homogeneous, isotropic, viscoelastic, unbounded medium. External
time-harmonic loads are applied in the horizontal and vertical directions; bi-quadratic load distributions over a rect-
angular patch within the full-space are considered. The coupled Navier-Cauchy equations of motion describing this
medium in the physical domain are solved by decomposing the displacement components into uncoupled potential
and scalar fields and subsequent domain transformation through double Fourier transforms. This technique enables
the original differential equations to be solved algebraically in the transformed domain. Transformed expressions
for the external loads are obtained and then incorporated as boundary conditions in the transformed domain. Final
expressions of stress and displacements within the full-space in the physical domain are written in terms of double
improper integrals corresponding to double inverse Fourier transforms, which need to be evaluated numerically.
These non-singular Green’s functions can be used to model bounded and unbounded problems through boundary
discretization and other meshless methods.
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1.1 Problem statement

Consider a three-dimensional, isotropic full-space, described by Lame’s constants µ and λ, damping coeffi-
cient η, and mass density ρ. In the absence of body forces, the Navier-Cauchy equations describing this medium
are

µ∇2U + (λ+ µ)∇(∇ •U) = −ω2ρU (1)

and

σij = λ(∇ •U)δij + µ(Ui,j + Uj,i). (2)

in which U and σ are stress and displacement fields and ω is the frequency of excitation. This paper proposes to
find solutions for U and σ for the cases in which the medium is under vertical and horizontal, bi-quadratically-
distributed time-harmonic loads. Loads are applied over a rectangular area of sides 2A (x−direction) and 2B
(y−direction), on the x− y (z = 0) plane (Fig. 1).

Figure 1. External loads with bi-quadratic distribution applied within the full-space.

2 General solution

According to Sommerfeld’s radiation condition in this unbounded full-space [10], physical quantities such as
the displacement field U = uiêi (i = x, y, z) are required to vanish for x→ ±∞. This linear-elastic field may be
expressed according to the Helmholtz decomposition as [11]:

ui = − 1

k2
L

∆,i +
2

k2
S

eimnΩn,m, (3)

in which k2
L = ω2ρ/(λ + 2µ) and k2

S = ω2ρ/µ are primary and secondary wave numbers, respectively, and ∆
and Ω are vector fields. Considering the full-space to be isotropic, the constitutive equation results in

σij
µ

= δij
1− 2n2

n2
∆− 2

k2
L

∆,ij +
2

k2
S

(eiklΩl,kj + ejklΩk,li) (4)

for the stress components, in which δij is the Kroenecker delta and n2 = k2
L/k

2
S . Trial solutions for the vector

fields ∆ and Ω can be written for domains m = 1 (−∞ < z ≤ 0) and m = 2 (0 ≤ z < +∞) in a way that
satisfies Sommerfeld [10] for both domains:

∆(1) = A(1)k2
LeαLz+i(βx+γy), (5)

Ω
(1)
j = B

(1)
j k2

SeαSz+i(βx+γy), (6)

∆(2) = A(2)k2
Le−αLz+i(βx+γy), (7)

and
Ω

(2)
j = B

(2)
j k2

Se−αSz+i(βx+γy). (8)

The solution of the title problem is then rewritten in terms of finding arbitrary functions A(m) (m = 1, 2) and
B

(m)
n (n = 1, 2, 3) for the present loading case (Fig. 1).
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The vector fields ∆ and Ω must be such that eijk∆k,j = 0 and ∂
∂xi

[eimnΩn,m] = 0 [11]. Considering Eqs.
5 to 8, this results in

α2
L,S =

(
β2 + γ2

)
− k2

L,S , (9)

and

B
(1,2)
3 =

∓i

αS
(βB1 + γB2) . (10)

The bi-quadratic external load considered in this article can be written as

p̄j (x, y, z = 0) =
1

4A2B2

(
T1x

2y2 + T2Bx
2y + 2T3B

2x2 + T4ABxy + T5Axy
2 + 2T6AB

2x+ 2T7A
2y2

+2T8A
2By + 4T9A

2B2
)
, (11)

where T1 = t1 +t3 +t5 +t7 +4t9−2 (t2 + t4 + t6 + t8), T2 = t1 +2t4 +t7−(t3 + t5 + 2t8), T3 = t2 +t6−2t9,
T4 = t1 +t5−(t3 + t7), T5 = t1 +t3 +2t6−(2t2 + t5 + t7), T6 = t2−t6, T7 = t4 +t8−2t9, T8 = −t4 +t8, and
T9 = t9 anywhere within the loaded area (|x| < A and |y| < B; z = 0) and zero otherwise. The corresponding
expression in the transformed Fourier domain is given by

p̄j (β, γ) = − 1

2A2B2πβ3γ3

9∑
i=1

p̄ij , (12)

in which

p̄1j

T1
=
(
β2A2 − 2

) (
γ2B2 − 2

)
sin (βA) sin (γB) + 2βγ

(
β2A2 − 2

)
sin (βA) cos (γB)

+ 2βA
(
γ2B2 − 2

)
cos (βA) sin (γB) + 4ABβγ cos (βA) cos (γB) ,

p̄2j

T2iγB
= −

(
β2A2 − 2

)
sin (βA) sin (γB) + βγ

(
β2A2 − 2

)
sin (βA) cos (γB)

− 2βA cos (βA) sin (γB) + 2ABβγ cos (βA) cos (γB) ,

p̄3j

2T3β2γ2
=
(
β2A2 − 2

)
sin (βA) sin (γB) + 2Aβ cos (βA) sin (γB) ,

p̄4j

T4ABβγ
= − sin (βA) sin (γB) + γB sin (βA) cos (γB) +Aβ cos (βA) sin (γB)−ABβγ cos (βA) cos (γB) ,

p̄5j

T5iAβ
= −

(
γ2β2 − 2

)
sin (βA) sin (γB)− 2Bγ sin (βA) cos (γB)

+Aβ
(
γ2β2 − 2

)
cos (βA) sin (γB) + 2ABβγ cos (βA) cos (γB) ,

p̄6j

2T6iABβ2γ2
= −βγ sin (βA) sin (γB) +ABβγ cos (βA) sin (γB) ,

p̄7j

2T7A2β2
=
(
γ2β2 − 2

)
sin (βA) sin (γB) + 2βγ sin (βA) cos (γB) ,

p̄8j

2T8iA2Bβ2γ
= − sin (βA) sin (γB) + βγ sin (βA) cos (γB) ,

p̄9j

4T8A2B2β2γ2
= sin (βA) sin (γB) .

The substitution of the loading function into the boundary conditions results in the displacement and stress
fields in terms of the Fourier wavenumbers. Inverse Fourier transforms must be performed numerically over
the resulting expressions in order to obtain these fields in the physical domain. This results in 6 displacement
components and 18 stress components, the final expressions of which are too long to show in this paper. The
reader may refer to Romanini et al. [12] to obtain these expressions. Equation 13 shows a selected example of the
horizontal displacement (x−direction) due to vertical loads (z−direction):
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uXZ
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z
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0
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)
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)
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0
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0
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)
sγB
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cγydkγ
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2A3

a0

∫ ∞
0

(∫ ∞
0

F1sβAsβxdkβ

)
Fγ1

k3
γ

cγydkγ

+ T82A2B
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0
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0

F1sβAcβxdkβ
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Fγ2
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in which DN = − ηr+iηi
2µπ2B2a20

, sβx = sin
(
a0
A kβx

)
, sγy = sin

(
a0
A kγy

)
, sβA = sin (a0kβ), sγB = sin (a0b0kγ),

cβx = cos
(
a0
A kβx

)
, cγy = cos

(
a0
A kγy

)
, cβA = cos (a0kβ), cγB = cos (a0b0kγ), b0 = B

A , a0 = Aω
√

ρ
µ ,

ᾱ2
L =

(
k2
β + k2

γ

)
− (k∗L/k

∗
S)2

ηr+iηi
, ᾱ2

S =
(
k2
β + k2

γ

)
− 1
ηr+iηi

, F1 = e−
a0
A ᾱL|z|− e−

a0
A ᾱS |z|, F2 = ᾱLᾱSe−

a0
A ᾱL|z|−(

k2
β + k2

γ

)
e−

a0
A ᾱS |z|, F3 = ᾱSe−

a0
A ᾱL|z|−ᾱLe−

a0
A ᾱS |z|, F4,5 = k2

γ,βᾱSe−
a0
A ᾱL|z|+

(
k2
β,γ − ᾱ2

S

)
ᾱLe

− a0
A ᾱS |z|,

Fβ1 =
(
a2

0k
2
β − 2

)
sβA + 2a0kβcβA, Fβ2 = −sβA + a0kβcβA, Fγ1 =

(
b20a

2
0k

2
γ − 2

)
sγB + 2b0a0kγcγB , and

Fγ2 = −sγB + b0a0kγcγB .

3 Numerical evaluation

The evaluation of the final displacement and stress fields requires special attention. The integrand of these
functions contain singularities corresponding to the wave numbers of the full-space, and an oscillatory-decaying
tail 2, which cannot be integrated properly with methods that involve truncation of the integration interval. In
this work, these integrals were evaluated with a combination of techniques. The first was the incorporation of a
small damping factor η in the elastic constants according to the correspondence principle [13]. This causes the
singularities to fall slightly out of the real integration path (Fig. 2a), which enables the nearly-singular integrand to
be evaluated with an adaptive Gauss quadrature [14]. The oscillatory-decaying portion of the integrand is evaluated
with an improved series extrapolation algorithm, which can predict the result of the integral without truncating the
integration interval [15].

The results from the present implementation were thoroughly validated with limiting cases from the literature.
For the sake of this comparison, a solution for uniformly distributed dynamic loads was obtained by integrating
the Kelvin solution by Kitahara [16] over a rectangular 2A × 2B patch. The resulting uniformly distributed load
was compared with the present implementation by making ti = 1. Comparisons with the classical Kelvin point-
load problem [17] were also obtained by making A and B small. Comparisons with the dynamic 2D plane-strain
solution by [18] were possible by making the ratio B/A large. The results showed excellent agreement with these
sources. Additionally, the implementation was shown to be able to reproduce the boundary conditions, which can
be verified by checking whether the stress components reproduce the shape of the external load near the loaded
surfaces.

Figures 3 and 4 show selected numerical results from the present implementation. These show displacement
and stress fields within the full space for µ = 1, ρ = 1, ν = 0.25, A = B = 1, ti = i (i = 1, ..., 9), and η = 0.01.
Results are presented in terms of the normalized frequency of excitation a0 = ωA/cS , in which c2S = µ/ρ is the
propagating speed of the shear wave in the full-space.
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Figure 2. Selected example of integrand showing a) singular region and b) oscillatory-decaying region.

Figure 3. Selected displacement components.

Figure 4. Selected stress components.

4 Conclusions

This paper introduced a new Green’s function for isotropic homogeneous media. The differential equations
describing the medium were solved with the aid of double Fourier transform, with which the originally coupled
equations could be solved algebraically. A boundary-value problem corresponding to the case of bi-quadratically-
distributed time-harmonic loads was considered. The paper presented strategies to evaluate the resulting double
Fourier transforms, in which form the displacement and stress fields are expressed, and showed selected numerical
results. The presented Green’s function can be used as a bi-quadratic boundary element in elastodynamics.
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