
Comparison of two open-source codes of the boundary element method for
acoustic problems
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Abstract. A comparison between two competing free and open-source codes of the boundary element method
(BEM) for internal and external acoustic problems is carried out in this work. The BEM programs used were
Bempp-cl and BB. While Bempp-cl is an well established Python program developed at University College London
and the University of Cambridge, BB is a more recent code, developed at the University of Brası́lia, written in Julia
language. For the mesh generation, an also open-source program, Gmsh, was used. Initially, internal problems on
a cubic geometry were solved, both in terms of response analysis in the resonant frequencies as well as frequency
response analysis for the three first modes of the problem. For the same problem, a processing time analysis was
also conducted, in order to assess the efficiency of the mentioned programs. The solutions obtained by the two
programs were compared with each other as well as with analytical solutions, when available. The results for the
cubic geometry shown that both programs were able to successfully predict the behavior for the modes and for
the frequency analysis, with a satisfactory time consuming. Therefore, the use of BEM and, specially, of both
programs studied in this article are very powerful tools, freely available, to solve large and complex engineering
problems, with great efficiency and accuracy.

Keywords: Boundary element method, Acoustics

1 Introduction

Acoustics are present daily in the lives of most people. What we humans perceive as sound is nothing more
than oscillations in the field of pressure in the air surrounding our ears. Such phenomenon, so present in the
environment, could not fail to be an object of study in engineering, whether to ensure acoustic comfort for people
or in high-tech applications. Examples are found in the study of automobiles, aircraft, concert halls, submarines
and rockets. There are also less usual applications, such as the acoustic levitator, developed by Marzo et al. [1].

In the acoustic analysis of engineering problems, numerical methods are often used. As engineering deals
with real problems, often purely analytical solutions are impossible to be obtained or are very imprecise due to
formulation simplifications, leading to the need of using numerical methods. According to Brancati [2], in the field
of acoustics, the BEM stands out as being the most efficient, specially for exterior problems, and is used by the
main commercial packages present in the industry.

In this paper, a comparison between two open-source BEM programs, BB1 and Bempp2, is conducted. Both
programs are compared in terms of precision (using analytical solutions) and time consumption.

BB is an open-source implementation of the BEM by collocation, written in the Julia language, which allows
acceleration by hierarchical matrices and the use of parallel processing, developed by the group of boundary
elements of UnB (UnBEM). The program is capable of solving the Laplace and Helmholtz equations for two and
three dimensions. To allow an easily replicable work methodology, which uses only open-source programs, BB
allows integration with Gmsh, FreeCad and ParaView.

Bempp is another open-source BEM program, written entirely in Python, developed at University College
London and the University of Cambridge. It uses Just in Time (JIT) compilers to make the Python language

1Available at: https://github.com/alvarocafe/BB.
2Available at: http://bempp.com.
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faster. PyOpenCL is used by default, allowing code parallelization using the CPU or GPU. Alternatively, it is also
possible to use numba. The software uses the indirect formulation of the BEM. In addition, the potential operators
discretization is done by the symmetrical Galerkin method. It is also possible to use the FMM through external
routines interface. The program also allows integration with the finite element method (FEM), using an interface
to the FEM program FEniCS.

2 Boundary Element Method

The BEM is a numerical method used to solve partial differential equations (PDE) using bounday integral
equations (BIE). The formulation used in this work is the direct boundary element method for the Helmholtz
equation, described in more details in Brebbia and Dominguez [3], Kirkup [4] and Liu [5].

The propagation of acoustic waves through a fluid medium Ω is described by the wave equation. Assuming
that the motion is time-harmonic, the BEM can be used to solve the non-homogeneous Helmholtz equation:

∇2u+ k2u = f, ∀x ∈ Ω, (1)

where u is a reduced velocity potential, k = ω/c is the wave number, c is the speed of sound, ω is the angular
frequency and x is the source point.

For an harmonic wave, u is related to the pressure, p, by:

p = ue−jωt, (2)

where t is the time and j =
√
−1. The physical pressure of the problem is obtained by considering only the real

part of the equation.
The two main boundary conditions are Dirichlet (known pressure), u = u,∀x ∈ Γ, and Neumann (known

speed), ∂u/∂n = un = jωρvn,∀x ∈ Γ, where ρ is the density of the fluid medium and vn the known speed.
The boundary integral equation can be found using Green’s Second Identity:

∫
Ω

(φ∇2φ∗ − φ∗∇2φ)dΩ =

∫
Γ

(
φ
∂φ∗

∂n
− φ∗ ∂φ

∂n

)
ds, (3)

where φ and φ∗ are generic functions. Considering φ = G and φ∗ = u, it is obtained:

∫
Ω

[G∇2u− u∇2G]dΩ =

∫
Γ

[
G
∂u

∂n
− u∂G

∂n

]
dΓ, (4)

whereG is the fundamental solution. To obtain the fundamental solution of the Helmholtz equation, it is necessary
to apply a unit concentrated source (pulsing point), represented by the Dirac delta δ, in the source point x, so that
the mathematical representation of the answer in another point y, called field point, is the Green’s fundamental
solution. Therefore, the fundamental solution must satisfy the fallowing equation:

∇2G+ k2G+ δ(x, y) = 0. (5)

Solving eq. (5), the fundamental solution for three-dimensional acoustic problems is obtained:

G(x, y, ω) =
1

4πr
ejkr, (6)

where r is the distance between the source and the field points. Now, applying eq. (1) and eq. (5) on eq. (4), it is
possible to obtain:
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u(x) =

∫
Γ

[
G
∂u

∂n
− ∂G

∂n
u

]
dΓ +

∫
Ω

[Gf ]dΩ ∀x ∈ Ω. (7)

Taking x to the boundary Γ, and considering that, for scattering problems, u = uS +uI , where uS is scattered
wave and uI is the incident wave, the conventional boundary integral equation (CBIE) is:

c(x)u(x) =

∫
Γ

[
G
∂u(y)

∂n
− ∂G

∂n
u(y)

]
dΓ(y) + uI(x) +

∫
Ω

fdΩ. (8)

where c(x) = 1/2 for smooth boundary on Γ.
The CBIE can be also presented by using boundary and potential operators. This approach is referred by Liu

[5] as being the indirect BEM formulation. The operators used in this formulation are:
• Single-layer

[Vkφ](x) =

∫
Γ

Gk(x, y)σ(y)dΓ(y), x ∈ Γ; (9)

• Double-layer

[Kkφ](x) =

∫
Γ

∂Gk(x, y)

∂n(y)
σ(y)dΓ(y), x ∈ Γ; (10)

• Adjoint double-layer

[K ′kφ](x) =

∫
Γ

∂Gk(x, y)

∂n(x)
σ(y)dΓ(y), x ∈ Γ; (11)

• Hypersingular

[Wkφ](x) = −
∫

Γ

∂2Gk(x, y)

∂n(x)∂n(y)
σ(y)dΓ(y), x ∈ Γ. (12)

Now, the CBIE, eq. (8), can be written in terms of the potential operators:

uΩ = νkun − κkuΓ + uI . (13)

By taking the trace on both sides of eq. (13), it can be obtained, for Dirichlet and Neumann problems:

V
∂u

∂n
= (±1

2
I +K)u, (14)

Wu = (±1

2
I −K ′)un. (15)

where the identity sign is positive for interior problems and negative for exterior problems.
According to Smigaj et al. [6], problems in which a combination of Dirichlet and Neumann boundary condi-

tions are imposed simultaneously in different parts of the boundary can be solved with:
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V
∂u

∂n
−Ku = (

1

2
I +K)u− V un, x ∈ Γ1; (16)

Wu+K ′
∂u

∂n
= (

1

2
I −K ′)un −Wu, x ∈ Γ2. (17)

3 Results

3.1 Internal acoustic response for the modes in a closed cubic cavity

The first comparisons were conducted on the internal problem of a cube, with size equal to 10. The response
obtained by BB and Bempp were compared with analytical solutions obtained using the transfer matrix method.
More details on the method and analytical solutions can be found at Gilbert [7], Morais [8] and Ferreira [9].

The mesh was generated using the open-source software Gmsh3. It has 1476 triangular elements and 740
nodes. The solution for the internal points were calculated on 40 points, located in a line in the center of the cube.

Three problems with different boundary conditions were solved: closed-closed, with Neumann closed con-
ditions imposed to every surface, open-closed, with Neumann closed conditions imposed to 5 surfaces and 1 face
with Dirichlet open condition, and open-open, with with Neumann closed conditions imposed to 4 surfaces and 2
faces with Dirichlet open conditions. The analytical solution is known for all those problems. The problems were
solved for the three fist modes. Figure 1 shows the comparison between BB, Bempp and analytical solutions for
the second mode of the closed-closed case.

Figure 1. Comparison of the response inside the cube for the second mode with closed-closed boundary conditions

The numerical solution error in relation to the analytical was evaluated using the root mean square value
(RMS) of the normalized error. The error obtained for the three problems can be seen on Table 1.

3Available at: https://gmsh.info/
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Table 1. RMS error for the first three nodes of the cubic geometry problems

n=1 n=2 n=3

BB closed-

closed

0,0005017 0,0024834 0,0102628

Bempp 0,0017108 0,0018608 0,0018774

BB open-

closed

0,0010254 0,0012278 0,0074104

Bempp 0,0052056 0,0007647 0,0057125

BB open-

open

0,0033344 0,0028213 0,0265669

Bempp 0,0003359 0,0004193 0,1237878

3.2 Frequency response analysis in a closed cubic cavity

Besides the analysis of the modes inside the cube, a frequency response analysis was also conducted, in order
to quantify the precision of both software in identifying the resonant frequencies for this geometry. The response
was obtained for 400 frequency points, in a range of 45 [rad/s] to 330 [rad/s]. Also, the response was analysed on
5 internal points of the cube, z = 0, 10, z = 2, 55, z = 5, 00, z = 7, 45, e z = 9, 90.

Figure 2 shows the comparison between the frequency response obtained by BB and Bempp, using the open-
closed boundary conditions. The vertical lines are the expected resonance frequencies found trough the analytical
analysis. Only the real part of the response was considered. The location inside the cube is z = 5, 00.

Figure 2. Real part of the frequency response for the open-closed conditions

The results obtained confirmed the capability of both programs in identifying the resonance frequency with
good precision. Some differences in the obtained response were spotted in points between the resonance frequen-
cies. Comparisons as the ones showed in Figure 2 were conducted for all three boundary conditions, closed-closed,
open-closed and open-open. The method used to obtain the numerical resonance frequency was to identify the fre-
quency whose response had the greatest magnitude of absolute value. The percentage errors were obtained using
error = (ωt − ωa)/ωa, where ωt is the frequency obtained numerically and ωa is the analytical frequency, and
are available at Table 2.
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Table 2. Resonance frequency errors obtained by BB and Bempp

n=1 n=2 n=3

BB closed-

closed

0,137% 0,087% 0,071%

Bempp 0,137% 0,087% 0,071%

BB open-

closed

0,425% 0,325% 0,21%

Bempp 0,425% 0,117% 0,055%

BB open-

open

0,083% 0,308% 0,144%

Bempp 0,137% 0,087% 0,15%

3.3 Processing time analysis in a closed cubic cavity

After assessing the precision of both programs, a study was conducted to compare the time consumed by them
to solve problems. The problem with closed-closed boundary conditions was solved using 5 different meshes, with
410, 1476, 6226, 10378 and 13526 elements.

One thing that requires attention is the fact that the comparison of both programs is not straightforward. As
described in Section 1, both programs use different methodologies of the BEM, with different inputs. In view of
all these differences, the solution to proceed with the comparison of processing times was to keep the settings that
were used previously for the closed-closed case. This choice safeguards the particularities of each of the programs,
using the formulation that is best suited to each one of them. As the implementation is the same used previously,
it is coherent to state that the comparison of processing time was performed for a certain level of precision of the
results, previously presented in the form of an error in relation to the analytical solution.

The processing time study was conducted in 3 different computers, in order to reduce hardware related errors.
Machine 1 is Google Colaboratory, a hosted Jupyter notebook service that provides free access to computing
resources including GPUs. The processors are 2 Intel(R) Xeon(R) with 2,3 GHz clock speed, with 2 siblings each.
It has a RAM memory of 12 GB. Machine 2 is a PC with AMD FX(tm)-8300 motherboard, a 8 core processor
and 16 GB RAM memory. Machine 3 is a notebook with Intel(R) Core(TM) i7-7500U CPU@2,70 GHz and 8 GB
RAM memory. The results of this comparison, for Machine 2, can be seen in Figure 3.

Figure 3. Processing time results for Machine 2

A summary of the results for the processing time study, obtained by the 3 machines, can be seen in Table 3.
The results on Table 3 show that, in general, Bempp had an inferior processing time. However, these results must
be taken with care. The reason is that, for the solving of the numerical problems using BB, 12 Gauss point were
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Table 3. Time consumed for BB and Bempp

Num. of elements Program Machine 1 Machine 2 Machine 3

410
Bempp 7,10 4,98 8,73

BB 9,92 7,43 5,79

1476
Bempp 24,24 34,16 8,40

BB 83,39 90,02 63,91

6226
Bempp 795,54 1139,47 380,07

BB 1963,36 1953,34 1076,65

10378
Bempp 2652,93 3919,44 1366,21

BB 5553,90 3590,34 2848,80

13526
Bempp 5222,41 8065,73 2927,81

BB 8908,38 6788,67 -

used for the numerical integrations. On the other hand, Bempp does not offer the possibility to define the number
of Gauss Point, nether informs how many are used. If less points of Gauss were used for BB, the time consumed
would be considerably reduced, while precision would also decrease. In a fast analysis, using 6 Gauss points for
BB, with Machine 2, reduced the time consumed by 33,2%, while the error increased by 39,3%.

4 Conclusions

The results in this paper showed that both open-source BEM programs studied, BB and Bempp, were able to
obtain solutions with good precision and time consumption. In average, BB predicted the behavior of modes with
a RMS error of 0.0061816 and resonant frequencies with an error of 0.199%, while Bempp presented an RMS
error of 0.0157416 for modes and 0.141% for the expected resonant frequencies.

Besides the precision analysis, a comparison was also conducted to assess the time consumed by both pro-
grams for meshes with different levels of refinement and for different computers. The results showed that, in
general, Bempp needed less processing time than BB, although this result should be further explored by changing
the number of Gauss points used by BB.

Authorship statement. The authors hereby confirm that they are the sole liable persons responsible for the au-
thorship of this work, and that all material that has been herein included as part of the present paper is either the
property (and authorship) of the authors, or has the permission of the owners to be included here.
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