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Abstract. In this work, response problems applied and governed by the Helmholtz equation are analyzed. The 

formulation Multiple Reciprocity Boundary Element Method (MRBEM) can be seen as an extension of the 

formulation with Dual Reciprocity (DRBEM) because the original problem as a whole is modeled by a sequence 

of fundamental solutions of a higher-order, while the formulation of the DRBEM uses a sequence of radial-based 

functions to approximate the kernel the domain integrals. Although both techniques apply the reciprocity 

theorem, the idea behind each method is essentially different. For the validation of this formulation, problems 

governed by the Helmholtz equation are solved, in which the MRBEM results were compared to a new 

formulation of the Boundary Element Method (BEM), denoted in this work as DIBEM-2 (Direct Interpolation 

Boundary Element Method without Regularization). DIBEM-2 makes use of radial basis functions to 

approximate domain integrals. Performance curves are generated by calculating the average percentage error for 

each mesh, demonstrating the convergence and precision of each method. 

Keywords: Boundary Element Method, Radial Functions, Fundamental Higher-Order Solutions, Helmholtz 

Equation. 

1  Introduction 

Historically, the Boundary Element Method (BEM) began to stand out in engineering applications after the 

publication of the book “The Boundary Element Method for Engineers” in 1978 [1]. Thenceforward, several 

researchers have pointed out that the BEM is quite suitable in applications in which the operators that 

mathematically characterize the governing equation are self-adjoint [2]. In this context, with the help of an 

auxiliary function, known as fundamental solution [1], it is possible to transform the domain integrals into 

boundary integrals [3]; however, the problems addressed by the mathematical concept of BEM are not always 

capable of performing this procedure. 

Based on this, the DIBEM [4] was proposed to offer an alternative to the use of the well-known DRBEM 

technique [5] in the approximation of domain integrals that normally represent the source, and inertia, among 

other field actions. The DIBEM showed good results in Poisson and Helmholtz problems [6, 7], an initiative 

derived from this technique that seeks to expand the study with the method without regularization, here called 

DIBEM-2. This technique approaches the same concept as DIBEM [4], however, it uses a well-elaborated 

auxiliary solution in the mathematical manipulations. 

Another approach for solving these problems is the MRBEM technique, developed mainly by Nowak in 

1989 [8] and extended to a series of applications by Nowak and Brebbia [9, 10, 11], including the problems by 

the Helmholtz equation. It is possible to view the MRBEM as a generalization of the Galerkin Tensor [5]. This 

method strategically adopts a sequence of higher-order fundamental solutions in terms of a primitive function 
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related to Laplacian or a differential operator to the Helmholtz operation and thus applies the Green identity 

several times [12]. As a result, the method takes the domain integrals to the exact boundary with just the base of 

the problem. 

The objective of this work is to add even more to the performance study carried out in the DIBEM-2 

technique when compared to the MRBEM in response problems governed by the Helmholtz equation, thus 

increasing the precision and solution capacity of the BEM. In the simulations carried out, linear elements are 

used in both formulations, as well as in the numerical values compared with available analytical solutions. 

2  Basic Equation 

One can deduce the Helmholtz Equation as a particular case of the Acoustic Wave equation [13]. Thus, the 

following Eq. (1) is considered for a two-dimensional case in a homogeneous media: 

 
𝛻2𝑢 + 𝜆𝑢 = 0,            𝜆 =

𝜔2

𝑘2
 (1) 

In Eq. (1), 𝑘 is the propagation velocity of the wave in the medium; 𝜔 is considered vibration frequency. 

An inverse integral equation equivalent to this term can be easily found through resources well known by 

classical BEM theory [1], as follows: 

 
𝑐(𝜉)𝑢(𝜉) + ∫ 𝑢(𝑋)𝑞∗(𝜉; 𝑋)𝑑𝛤

𝛤

− ∫ 𝑞(𝑋)𝑢∗(𝜉; 𝑋)𝑑𝛤
𝛤

= 𝜆 ∫ 𝑢(𝑋)𝑢∗(𝜉; 𝑋)𝑑𝛺
𝛺

 (2) 

In Eq. (2), 𝑢(𝑋) represents the scalar potential and 𝑞(𝑋) its normal derivative; mutually, an auxiliary 

function 𝑢∗(𝜉; 𝑋), called fundamental solution, and 𝑞∗(𝜉; 𝑋) is its normal derivative, were used. Both functions 

are dependent on the Euclidean distance 𝑟(𝜉; 𝑋) between the source point 𝜉 and any field point of domain 𝑋, 

which can be found in specialized literature. The coefficient 𝑐(𝜉) is defined by the smoothness on the boundary 

Γ(𝑋) and depends on the position of the point 𝜉 concerning the physical domain Ω(𝑋) [14]. 

Both DIBEM-2 and MRBEM use the fundamental solution 𝑢∗(𝜉; 𝑋) corresponding to the solution of a 

stationary diffusive problem as an auxiliary function in the information of the boundary integral equation, both 

by the Poisson equation in an infinite medium. The difference between the DIBEM-2 and the MRBEM method 

occurs in the domain integrals approach on the right side of Eq. (2), that is, the inertia of the system. In addition, 

DIBEM-2 information uses an artifice, applying a more elaborated auxiliary function, so that one can integrate 

Eq. (1) and take it to the boundary problem, as will be discussed in the scope of this work. 

3  Direct Integration without Regularization 

The first step is to propose a new auxiliary function 𝑏∗(𝜉; 𝑋) so that one can integrate Eq. (1) and take it to 

a boundary integral in the inverse form, according to the typical mechanisms of the BEM. 

 𝑏∗(𝜉; 𝑋) = 𝑢∗(𝜉; 𝑋) − 𝜆𝐺∗(𝜉; 𝑋) (3) 

In Eq. (3) the auxiliary function 𝑏∗(𝜉; 𝑋) consists of the fundamental solution 𝑢∗(𝜉; 𝑋) correlated to the 

problems governed by the Laplace Equation and 𝐺∗ is the Galerkin tensor [5]. In the same way that we 

approached the concepts by the classical theory of BEM in Eq. (2), it is plausible to rewrite Eq. (1) with the 

auxiliary function of Eq. (3) as follows: 

 
𝑐(𝜉)𝑢(𝜉) + ∫ 𝑢𝑞∗𝑑𝛤

𝛤

− ∫ 𝑞𝑢∗𝑑𝛤
𝛤

+ 𝜆 ∫ (𝑢,𝑖 𝐺∗)𝜂𝑖𝑑𝛤 −
𝛤

𝜆 ∫ (𝑢𝐺∗,𝑖 )𝜂𝑖𝑑𝛤
𝛤

= − 𝜆2 ∫ 𝑢𝐺∗𝑑𝛺
𝛺

 
(4) 

The integral term on the right side of Eq. (4) can be approximated using a sequence of radial basis 

functions, in which the entire kernel of the domain integral is interpolated. The direct integration technique is 

similar to Dual reciprocity, as shown by Eq. (5). 
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 𝑢(𝑋)𝐺∗(𝜉; 𝑋) ≅ 𝛼
𝑗𝜉

𝐹𝑗(𝑋𝑗; 𝑋) (5) 

In Eq. (5), the 𝐹𝑗(𝑋𝑗; 𝑋) represents a set of radial interpolation functions and the coefficient 𝛼
𝑗𝜉

 is the 

constant that corresponds to the interpolation function, which depends on the source point 𝜉 and arbitrary base 

points 𝑋𝑗. It is worth noting that the number of arbitrary base points 𝑋𝑗 must be identical to the number of nodal 

points. To improve the proposed interpolation within the domain, these points should also be centered internally. 

As with Dual reciprocity, the DIBEM-2 technique also uses a primitive interpolation function 𝜓𝑗  [5]. In this 

way, it’s acceptable to write the domain integral of the inertia term, as follows: 

 
∫ 𝛼

𝑗𝜉
𝐹𝑗(𝑋𝑗; 𝑋)𝑑𝛺 = ∫ 𝛼

𝑗𝜉
𝛹,𝑖𝑖 (𝑋𝑗; 𝑋)𝑑𝛺 = ∫ 𝛼

𝑗𝜉
𝛹,𝑖

𝑗
𝜂𝑖(𝑋𝑗; 𝑋)𝑑𝛤

𝛤𝛺𝛺

= 𝛼
𝑗𝜉

∫ 𝜂𝑗(𝑋𝑗; 𝑋)𝑑𝛤
𝛤

 
(6) 

In Eq. (6), the functions 𝜂𝑗(𝑋𝑗; 𝑋) and 𝜓𝑗(𝑋𝑗; 𝑋) are known, derived from the functions 𝐹𝑗(𝑋𝑗; 𝑋), which 

was chosen in this study as the thin-plate radial basis function, that is, the argument of the function is composed 

of the Euclidean distance 𝑟(𝑋𝑗; 𝑋) between the arbitrary base points 𝑋𝑗 and the interpolation points 𝑋. It is worth 

emphasizing that the results were satisfactory when this transformation was carried out in previous problems 

[15]. Due to limited space, the matrix treatment of this equation won’t be discussed, however, it resembles and 

can be acquired from previous works [4, 6]. Thus, the final system can be written as follows:  

 𝐻𝑢 − 𝐺𝑞 − 𝜆𝑊𝑢 + 𝜆𝑆𝑞 = − 𝜆2𝑀𝑢 (7) 

4  Formulation with Multiple Reciprocity 

Considering again Eq. (2), to simplify the terms subscripted here, denoted as 𝑢0
∗(𝜉; 𝑋), known as the 

fundamental solution, these were used to distinguish themselves from other similar solutions that will be 

generated during mathematical manipulation. 

 
∫ 𝛻2𝑢(𝑋)𝑢0

∗(𝜉; 𝑋)𝑑𝛺 = −𝜆 ∫ 𝑢(𝑋)𝛻2𝑢1
∗(𝜉; 𝑋)𝑑𝛺

𝛺𝛺

 (8) 

In Eq. (8), the term subscript as 𝑢0
∗(𝜉; 𝑋), on the left, represents the diffusive portion; and for the right side, 

the fundamental solutions 𝑢0
∗(𝜉; 𝑋) represents the Galerkin Tensor. Thus, the same strategy addressed by the 

classical theory of the BEM is used to treat the left side,  

 

𝑐(𝜉)𝑢(𝜉) + ∫ (
𝛤

𝑢𝑞0
∗ − 𝑞𝑢0

∗) 𝑑𝛤 = 𝜆 ∫ 𝑢𝛻2𝑢1
∗

𝛺

𝑑𝛺 (9) 

where 𝑞0
∗(𝜉; 𝑋) is the normal derivative. The first step in approaching the domain integral with MRBEM is 

to adopt the fundamental higher-order solutions [12]:  

 
𝛻2𝑢𝑗+1

∗ = 𝑢𝑗
∗,       𝑞𝑗

∗ = (
𝜕𝑢𝑗

∗

𝜕𝑛
) ,       𝑗 = 0,1,2, … , (10) 

Therefore, when we work on the fundamental solution for the first time, that is, the subscript term is equal 

to 𝑢1
∗(𝜉; 𝑋), the solution corresponds to the Galerkin Tensor. Thus, using the concept addressed in Eq. (10) and 

inputting in the domain integral of Eq. (9), it becomes: 

 

𝜆 ∫ 𝑢𝛻2𝑢0
∗

𝛺

𝑑𝛺 = 𝜆 ∫ 𝑢𝑢1
∗

𝛺

𝑑𝛺 = 𝜆 ∫ (
𝛤

𝑢𝑞1
∗ − 𝑞𝑢1

∗) 𝑑𝛤 − 𝜆2 ∫ 𝑢𝑢2
∗

𝛺

𝑑𝛺 (11) 

A similar procedure performed to 𝑁 times on this domain integral converts as such: 
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𝑐(𝜉)𝑢(𝜉) + ∑(𝜆)𝑗

𝑁

𝑗=0

∫ 𝑢𝑞𝑗
∗ 𝑑𝛤

𝛤

− ∑(𝜆)𝑗

𝑁

𝑗=0

∫ 𝑢𝑞𝑗
∗ 𝑑𝛤

𝛤

= (−1)𝑁(𝜆)𝑁+1 ∫ 𝑢𝑢𝑁
∗

𝛺

𝑑𝛺 (12) 

The right side of Eq. (12) can be neglected in engineering practice, since it was proven that, for the two-

dimensional and three-dimensional dimensions, the domain integral converges to zero when 𝑁 is sufficiently 

large [16]. 

 
𝑐(𝜉)𝑢(𝜉) + ∑(𝜆)𝑗

𝑁

𝑗=0

∫ 𝑢𝑞𝑗
∗ 𝑑𝛤

𝛤

=  ∑(𝜆)𝑗

𝑁

𝑗=0

∫ 𝑢𝑞𝑗
∗ 𝑑𝛤

𝛤

 (13) 

Due to limited space, the manipulation of the Galerkin’s Tensor won’t be demonstrated either, however, it 

can be seen in previous works [5]. Finally, the complete discretization of Eq. (13) can be written as: 

 𝐻 = 𝐻0 − 𝜆𝐻1 + ⋯ + (−𝜆)𝑛𝐻𝑛

𝐺 = 𝐺0 − 𝜆𝐺1 + ⋯ + (−𝜆)𝑛𝐺𝑛
 (14) 

5  Numerical Simulations 

The simulations presented hereafter consist of response problems, that is, the system is resolved by a scan 

at different excitation frequencies. As a consequence, the potential equilibrium configurations are determined as 

a function of a set of known conditions. Two simple examples, with known analytical solutions, were chosen for 

an analysis of the results. Seeking to make a fair comparison, it was taken as a measure of error, being equal to 

the difference between the numerical and analytical values divided by the module of the highest analytical value. 

5.1 Clamped sheet 

This first example consists of consists of a one-dimensional harmonic problem governed by the Helmholtz 

equation. The geometric characteristics are shown in Fig. 1. 

 

 

Figure 1. Clamped sheet and boundary conditions. 

The value of 𝑘 was considered as unitary. The analytical solution of this case is given by Eq. (15). 

 
𝑢(𝑥) =

𝑠𝑖𝑛(𝜔𝑥)

𝜔𝑐𝑜𝑠(𝜔)
 (15) 

For a better evaluation of the numerical behavior, simulations of DIBEM-2 and MRBEM were processed 

with the same number of nodal points and, for DIBEM-2, interpolating points were also used inside the mesh to 

provide reasonable results since all the kernel of the domain integral referring to inertia is interpolated. The 

excitation frequencies were varied from 1.0 to 20.0 in an interval of 0.5. The intention is to verify if the DIBEM-

2 formulation presents satisfactory and faster results when compared to the MRBEM since it uses primitives and 
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the refinement of the meshes to plot acceptable results. It is observed that in all computer simulations, the 

performance of DIBEM-2 offered satisfactory results, as well as that of MRBEM, as shown in Fig. 2. 

 

 

Figure 2. Weighted mean error curves, using linear elements, for the clamped sheet. 

Also in Fig. 2, it can be noted that the error levels dropped significantly with the use of the boundary mesh 

refinement in DIBEM-2 and MRBEM, as the mesh with 320 nodes in the boundary (NBP) had a superior 

performance when compared to the 160 NBP, however, in DIBEM-2 it is not plausible to disregard the 

importance of the internal point cloud. It is possible to observe that, for DIBEM-2, the mesh with 320 NBP and 

576 internal points (NIP) had a better performance when compared to the mesh of 320 NBP and 324 NIP, 

proving the importance of the internal points inside the mesh. It is noteworthy that the manifestation of the error 

peaks shown in Fig. 2 is because the calculated frequencies are very close to the natural frequency so that the 

analytical solution tends to infinity and an almost singular response from the numerical method is expected. As 

computational time is also an important point for the evaluation of DIBEM-2 with the MRBEM formulation, the 

same mesh was used for data collection as shown in Table 1. 

Table 1. Relation of total computational time for each mesh. 

BEM Mesh Time (s) 

DIBEM-2 (160/484) 291.73 

DIBEM-2 (320/324) 422.56 

DIBEM-2 (320/576) 941.44 

MRBEM (160) 1531,29 

MRBEM (320) 2473.42 

 

It can also be seen in Fig. 2 and Tab. 1 that the precision of DIBEM-2 when scanning the excitation 

frequencies was similar to that of MRBEM, however, DIBEM-2 presented a drastic reduction in computational 

time concerning MRBEM, being possible to notice that the most refined mesh reached approximately 38%. 

Thus, it is plausible to say that the DIBEM-2 mathematical model is effectively more consistent. 

5.2 Square membrane with three clamped edges 

This second example consists of a two-dimensional harmonic problem, governed by the Helmholtz 

equation. The geometric characteristics, in this case, are presented in Fig. 3. 
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Figure 3. Square membrane and boundary conditions. 

In the same way, as in the first problem, the value of 𝑘 was considered unitary, as was that of 𝑃. Boundary 

conditions are all prescribed under essential conditions, making this problem more complex than the first. The 

analytical solution of this case is given by Eq. (16). 

 
𝑢(𝑥, 𝑦) =

𝑠𝑖𝑛(𝑥√𝜔2 − 𝜋2) 𝑠𝑖𝑛(𝜋𝑦)

𝑠𝑖𝑛(𝑥√𝜔2 − 𝜋2)
 (16) 

To perform a performance comparison as in the previous example, regarding the behavior of DIBEM-2, the 

same context of analysis was approached, however, the excitation frequencies of 16.00 and 19.00 were changed 

respectively to 15.90 and 18.90 due to proximity with the natural frequencies calculated. As in the first example, 

the performances of DIBEM-2 and MRBEM were satisfactory, and the error levels dropped significantly as the 

number of nodes in the boundary (NBP) and interpolating points (NIP) inside of the mesh were refined, as can 

be seen below (Fig. 4). 

 

 

Figure 4. Weighted mean error curves, using linear elements, for the square membrane. 

In Fig. 4, it is worth highlighting the importance of the internal point cloud present in DIBEM-2, in which 

some points have the mesh with lower NBP refinement and higher NIP. This generates better results when 

compared with a more refined mesh in the boundary, but the refinement of the mesh works favorably to gain 

precision. It is important to emphasize that, unlike DIBEM-2, the refinement of the boundary mesh in the 

MRBEM has a strong influence on the reduction of the error percentage, however, the number of primitives 

performed in the formulation also has an influence, causing some instability and requiring more computational 

time. 

Finally, in Tab.2 the computational time results for the refinement of DIBEM-2 and MRBEM meshes are 

presented. The objective is to reaffirm how effective the DIBEM-2 mathematical model is in concerning the 

MRBEM. It can also be seen in this table that the refinement of the mesh of internal points automatically 

interferes with computational expenditure. 
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Table 2. Relation of total computational time for each mesh. 

BEM Mesh Time (s) 

DIBEM-2 (84/484) 192.39 

DIBEM-2 (160/144) 161.04 

DIBEM-2 (160/484) 352.77 

DIBEM-2 (320/324) 519.42 

DIBEM-2 (320/576) 1067.22 

MRBEM (160) 965.21 

MRBEM (320) 3942.18 

6  Conclusions 

The Multiple Reciprocity technique is still the simplest alternative to overcome the mathematical 

difficulties that arise when applying the BEM to problems with operators that characterize governing equations 

that are not self-adjoint. However, the DIBEM-2 technique, through a scanning procedure of the excitation 

frequencies, demonstrated flexibility and robustness when used in problems governed by the Helmholtz 

equation. It’s important to emphasize that the results showed less computational expenditure and more precision 

with the DIBEM-2 technique. In view of the observed aspects, in future works, it would be plausible to better 

examine the DIBEM-2 system, so that dynamic responses can be solved, that is, with advances in time and 

eigenvalue calculation problems and thus expanding its scale of applications. 
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