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Abstract. The main objective of this work is the development of a formulation of boundary elements for the
anisotropic material problem evaluation under centrifugal loads. The fundamental anisotropic solutions are used
and terms of inertia are considered as body forces. The domain integrals that result from the inertial terms are
transformed into boundary integrals using the radial integration method. As a result, no internal points are needed
to improve the accuracy of the solution. Discontinuous quadratic boundary elements are used whose degrees of
freedom are written in a local reference system, where the directions of the coordinate axes coincide with the
normal and tangent directions to the boundary at the collocation point. Problems with known analytical solutions
are used in order to assess the accuracy of the proposed formulation. There is a good agreement between the
numerical and exact solutions.
Keywords: Boundary Element Method, Anisotropic Materials, Centrifugal Loads.

1 Introduction

Monocrystalline alloys are the material used in aeronautic turbine blades because its high strength to high
temperatures. They work in very high angular rotations which produce stresses in the blades that, due to oscillation,
can nucleate smalls cracks that will propagate and break the blade due to fretting process. There are few works in
literature that consider the centrifugal forces loading the blades. The majority of papers just consider that the blade
is under tension by Papanikos et. al [1]. Because the monocrystal, these alloys are anisotropic.

The anisotropic behaviour of materials increases the number of variables in structural analysis. Due to this,
analytical solutions are limited to simple problems. Numerical methods are necessary for the analysis of complex
structures.

The use of boundary element method (BEM) for the solution of problems with anisotropic materials has be-
come more common in recent years. As anisotropy increases the number of material elastic constants, difficulties
in modelling arise in the development of the numerical formulations. Particularly, in the boundary element formu-
lation, the larger number of variables means far more difficulty in deriving fundamental solutions. This aspect is
evident in the literature. The number of references in which the boundary element method is applied to anisotropic
structure is significantly smaller than the number for isotropic structures. However, in the last 10 years, important
advances in the application of boundary element techniques to anisotropic materials have been published in the
literature. For example, plane elasticity problems have been analyzed by Tyagnii [2], Cordeiro and Leonel [3],
contact problems in elastic solids by Nguyen and Hwu [4], three-dimensional problems by Gu et al. [5], Shiah and
Hematiyan [6], Shiah and Hematiyan [7].

In the general boundary element formulation with body forces, domain integrals arise in the formulation ow-
ing to the domain loads. In order to evaluate these integrals, a cell integration scheme can be used to give accurate
results, as carried out by Shi and Bezine [8] for anisotropic plate bending problems. However, the discretization
of the domain into cells reduces one of the main advantages of the BEM, that is, the discretization of only the
boundary. An alternative to this procedure was presented by Rajamohan [9], which proposes the use of particular
solutions to avoid domain discretization. However, the use of particular solutions requires us to find a suitable
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function which satisfies the governing equation. Depending on how complicated the governing equation is, this
function may be quite difficult to find.

In the work described in this paper, domain integrals which arise from domain loads are transformed into
boundary integrals by exact transformation using the radial integration method. This method was initially presented
by Venturine [10] for isotropic plate bending problems. Later, Gao [11] has extended it to three-dimensional
isotropic elastic problems. The most attractive feature of the method is its simplicity, since only the radial variable
is integrated. For domain integrals which include unknown variables, the proposed procedure can be performed
using a radial basis function as in the dual reciprocity method suggested by Gao [11]. In the case of centrifugal
loads, as body forces do not depend on unknown variables, no radial basis function and, consequently, no internal
points are necessary in the formulation.

In this paper, the BEM is applied to the analysis of stress and displacement fields in anisotropic problems
under centrifugal loads. The radial integration method is used in order to transform domain into boundary integrals.
No domain discretization and no internal points are necessary in the formulation. Unknown variables and boundary
conditions are written in a local coordinate system that expand the range of problems that can be modeled by the
formulation. Numerical results are compared with exact solutions and dependence on boundary discretization is
accessed.

2 Boundary element formulation for 2D anisotropic elasticity

The boundary integral equation for 2D anisotropic problem is given by Sollero and Aliabadi [12]:

cij(zo)ui(zo) +

∫
Γ

Tij(z, zo)uj(z)dΓ(z) =

∫
Γ

Uij(z, zo)tj(z)dΓ(z)∀zεΓ (1)

where the coefficient cij(zo) is given by δij+Aij(z0) in which δij is the Kronecker’s delta. At a smooth boundary
point, cij(zo) = δij/2, at an internal point, cij(zo) = 1. Fundamental solutions for displacement Uij(z, zo) and
traction Tij(z, zo) are:

Uij(z, zo) = 2<[qi1Aj1 log(zo1 − z1) + qi2Aj2 log(zo2 − z2)] (2)

Tij(z, zo) = 2<
[
gj1(µ1n1 − n2)Ai1

(zo1 − z1)
+
gi2(µ2n1 − n2)Aj2

(zo2 − z2)

]
(3)

where the terms qij , gji andAij are complex material constants,< stands for the real part of a complex number and
log is the natural logarithm. Constants µk are complex numbers that are the roots of a characteristic polynomial
as given by Lekhnitskii [13], Sollero and Aliabadi [12]. The field point z and the source point zo are written in
complex form as:

z =

 z1

z2

 =

 x1 + µ1x2

x1 + µ2x2

 (4)

zo =

 zo1

zo2

 =

 xo1 + µ1xo2

xo1 + µ2xo2

 (5)

3 Treatment of body forces

When there are body forces in the formulation, the boundary integral equations are given by:

ckiui +

∫
Γ

TikuidΓ =

∫
Γ

UiktidΓ−
∫

Ω

piUikdΩ (6)

In this work, the radial integration method is used in order to transform the domain integral of Equation (6)
into a boundary integral.

Writing a domain integral in a polar form:∫
Ω

piUikdΩ =

∫ θ2

θ1

∫ r

0

Uikpi[x(ρ, θ), y(ρ, θ)]ρdρ︸ ︷︷ ︸
Fi

dθ (7)
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making some changes, it is possible to get:

ul +

∫
Γ

TliuidΓ =

∫
Γ

UlitidΓ +

∫
Γ

Fi
~n.~r

r
dΓ (8)

where ~n and ~r are unit vectors. The Eq. (8) will be used as the basic equation for the boundary element method to
treat anisotropic problems under centrifugal loads. The absence of domain integrals can be noted.

3.1 Discontinuous quadratic shape functions

The formulation of this work is isoparametric, that is, in addition to the physical variables in the boundary
(displacements and tractions), the geometry is also approximated by discontinuous quadratic elements, as follows:

x =

 x1

x2

 =

 φ(1) 0 φ(2) 0 φ(3) 0

0 φ(1) 0 φ(2) 0 φ(3)





x
(1)
1

x
(1)
2

x
(2)
1

x
(2)
2

x
(3)
1

x
(3)
2


= φx(n) (9)

where u(n)
i and t(n)

i are the nodal values of displacements and tractions, respectively, and φ(i) are the quadratic
discontinuous shape functions.

In this way, the boundary integrals can be written as:

H(j) =

∫
Γj

Tlkφ
(j)dΓ =

∫ 1

−1

Tlkφ
(j)|J |dξ (10)

G(j) =

∫
Γj

Ulkφ
(j)dΓ =

∫ 1

−1

Ulkφ
(j)|J |dξ (11)

where J represents the Jacobian module of the transformation, and is given by:

|J | = dΓ

dξ
=

{(
dx1

dξ

)2

+

(
dx2

dξ

)2
}1/2

(12)

where dx1/dξ and dx2/dξ are obtained by deriving the Eq. (9) with respect to ξ.
One of the contributions of this work is in the use of discontinuous quadratic shape functions for interpolation

in space. It has been very common in the literature to use discontinuous quadratic functions for the physical vari-
ables of the problem, for example, temperature and flow in the problems of heat conduction and displacements and
tractions in problems of structural analysis. However, the use of discontinuous functions to interpolate geometry
was always disregarded. The justification for not using it was due to the nodes being located inside the element.
Thus, in the case of curved elements, there is a risk of a discontinuity between the end of one element and the
beginning of another.

This problem does not exist when the elements are continuous as there are nodes at the ends of the elements
that are shared between neighboring elements.

In order to ensure that there is no overlap between two neighboring elements, in this work, the continuous
functions are used to define the positions of the nodes of the discontinuous elements. Proceed as follows:

• Parabolic elements are generated using the continuous functions;
• The position of the nodes of the discontinuous elements are calculated by ξ = −2/3, ξ = 0 and ξ = 2/3.
Proceeding in this way, since 3 points always define a single parable, discontinuous elements can be used to

interpolate the geometry without overlapping at the ends of the elements.

3.2 Local referral system

In this work, instead of the reference system (x1, x2), a local system with axes in the normal and tangent
directions to the node, called system (n, t), is used to apply the boundary conditions. Thus, problems with bound-
ary conditions of restricted displacements in the normal direction can be easily implemented, which significantly
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increases the number of problems that can be analyzed by the implemented formulation. In addition, the imple-
mentation of formulations for the analysis of contact mechanics is quite direct.

Thus, it is possible to obtain the following equation:

Ĥû = Ĝt̂ + p (13)

where û and t̂ are vectors that contain displacements and tractions, respectively, in all nodes, written in the local
reference system (n, t). The matrices Ĥ and Ĝ are the influence matrices H and G, calculated taking into account
that the shape functions were multiplied by the transformation matrices. Since the vector p does not depend on the
values of displacements and tractions, it remains unchanged.

To calculate the unknown variables, a column exchange is made between the matrices Ĥ and Ĝ, according to
the boundary conditions, generating the matrices A and B. Thus, all unknown variables in the boundary, be they
displacements or tractions, pass to a vector x and the known variables pass to a vector y, obtaining:

Ax = By + p (14)

which can be rewritten in the form of a linear system:

Ax = b (15)

Once this linear system has been solved, unknown variables are reordered, which have now been calculated,
and which are found in the vector x and the known variables, obtaining all values of the vectors u and t.

3.3 Calculation of stresses at the boundary

To calculate the stress tensor on a given boundary node, consider a node in which the directions of the tangent
and normal vectors to the boundary do not coincide with the directions of the reference. In this node, a new x1′x2′

reference system is created, with directions that coincide with the tangent and normal vectors to the boundary in
this node. Writing the displacements and tractions in this local system, we have:

u′i = lijuj

t′i = lijtj (16)

where lij are the cosine directors.
From the stress strain relationship, we have:

σ′11

σ′22

σ′12

 =


Q′11 Q′12 Q′16

Q′12 Q′22 Q′26

Q′16 Q′26 2Q′66




ε′11

ε′22

ε′12

 (17)

where Q′ij are the components of the stiffness tensor written in the local frame.
In the Eq. (17) there are three unknowns σ′11, ε′22, ε′12, which can now be calculated. Finally, the stress must

be written in the global reference x1x2, that is:
σ11

σ22

σ12

 = T−1


σ′11

σ′22

σ′12

 (18)

where T is the coordinate transformation matrix.

4 Numerical application

In this section, a numerical application of the developed formulation will be presented. Consider a blade
of an aeronautic turbine, fixed in the rotor motor by a dovetail joint as shown in Figure 1. The blade is of an
hypothetical orthotropic material with properties given in Table 1. The friction between the rotor and the blade
was not considered. The boundary conditions and the mesh used to analyze the problem are given in Figure 2 (a).
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Table 1. Geometry, velocity, and material property - Aeronautic turbine blade.

Properties Symbol Unity

Constant Angular Speed ω 100.000 RPM

Modulus of Elasticity E1 114 GPa

Modulus of Elasticity E2 228 GPa

Transverse Elasticity G12 11.4 GPa

Poisson Ratio ν12 0.3

Figure 1. Turbine rotor and blade sketch by Papanikos [1].
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The dimensions of the rotor and the blade are available in Figure 1.
A mesh with 37 discontinuous quadratic boundary elements are used, distributed as shown in Figure 2 (a) and

deformed the blade is shown in the Figure 2 (b).

(a) (b)

Figure 2. (a) Boundary conditions and (b) deformation blade.

The normal stresses in the contact region are shown in Figure 3 (a) and the normal tangential displacements
are shown in the Figure 3 (b).

(a) (b)

Figure 3. Contact region (a) normal stress (b) displacements.

The results for normal stresses presents in the same shape of results shown by Sinclair and Cormier [14].
However, due to insufficient data provided in the cited article, it was not possible to reproduce their results. Note
that the normal stress peaks at the ends of the contact region, falling in the central region of the contact. This
behavior is the opposite of the normal stress that occurs in the contact of two cylinders without friction (Hertz
problem), where the highest stress occurs at the central point of contact.

5 Conclusions

This work presents a formulation based on the boundary element method for the solution of problems with
body force under centrifugal loads in anisotropic materials.

An analysis of an aeronautical turbine blade was used to demonstrate the possibility of a practical application
of the developed formulation. The results had the expected behavior, although a quantitative analysis of the errors
was not made, due to the insufficiency of the data of the work that presents the original problem.

The modeling of the problems was performed with discontinuous quadratic elements, which brings advan-
tages and disadvantages with respect to the continuous elements. As advantages we can mention the non-sharing
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of nodes, which facilitates the implementation. As a disadvantage, we can mention a bigger number of degrees of
freedom when compared to a continuous element mesh with the same number of elements, since in discontinuous
element the nodes are not shared between neighboring elements.

Another peculiar feature of this work was the use of the local reference system to represent the boundary
conditions and the unknown variables in the boundary. This facilitated the imposition of boundary conditions of
restricted displacements in the normal direction to the boundary, which is a common type of boundary condi-
tion in engineering problems. For example, frictionless contact problems where a contact surface is flat can be
implemented without any code changes. This was demonstrated in the numerical example shown in the results
section.
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