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Abstract. Numerical simulation of brittle fracture of three-dimensional solids is addressed in this work by the
boundary element method (BEM) and the strong discontinuity approach (SDA). In this formulation, cracks are
treated using a non-geometric representation through the use of cells with embedded discontinuity. Into these cells,
the inelastic strain field is obtained as a result of the application of kinematic equations with discontinuities in the
displacement field (strong discontinuities) to standard continuum constitutive models, containing a softening law.
A reinterpretation of some parameters of the constitutive model is also performed to guarantee its compatibility to
the discontinuous kinematics. Since in the BEM only the internal regions where dissipative effects happen need
to be discretized into cells, crack propagation is driven by activations of such cells during the loading process,
followed by an expansion of the matrices that define the discrete model.
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1 Introduction

The boundary element method (BEM) has been used for the structural analyses of solids with physically
nonlinear behavior since its origins, when it was still known as boundary integral equation method. Following the
theory developed by Telles and Carrer [1] which proposes an implicit formulation using the proportional relation-
ship between rates of stress and elastic strain. The initial field increments were written in terms of total strain,
resulting in a discrete equilibrium equation, which is linearized and iteratively solved.

In this context, when only elastoplastic constitutive models had been considered, some adaptation were nec-
essary for dealing with quasi-brittle materials. Many effort were dispensed in this subject, as summarized by
Peixoto et al.[2]. However, the problems of mesh dependence associated with strain localization and the need
for nonlocal strategy for regularization are always present. Fortunately, in the context of the strong discontinuity
approach (SDA) the standard continuum constitutive model can be applied even for unbounded strains that are
compatible with discontinuous displacement field (Oliver [3]).

Manzoli and Venturini [4, 5] works introduced discontinuity interfaces inside triangular cells that dicretize
the whole domain. They used associative elastoplastic constitutive models with a specific yield criterion, together
with an exponential softening law to represent the behavior of crack in quasi-brittle materials. Later, this idea was
extended by using an isotropic damage model and a tracking algorithm to generate cells automatically, in the di-
rection of the crack path determined during the analyses (Manzoli et al. [6]). A further improvement was presented
by Peixoto et al. [7, 8], who sophisticated the nonlinear analysis, involving inelastic dissipation with softening in
continuous media, bifurcation analysis and transition between weak and strong discontinuities. They used sub-
parametric quadrilateral cells with constant approach (uniform displacement jumps) with another automatic cells
generation algorithm. In a subsequent work, Mendonça et al. [9] successfully proposed the use of non-uniform
displacement jumps inside a cell to overcome the stress locking phenomena reported in [7, 8].

This work presents some steps for the extension of SDA modeling with BEM for three-dimensional failure
analyses, considering that all aforementioned works which used this formulation were limited to two-dimensional
problems. Here, the implicit BEM formulation is used for the analysis of solids with physically nonlinear behav-
ior, under monotonic load and small deformations. An elastic-degrading constitutive model with an exponential
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softening law for isotropic materials are considered together with the SDA. In particular, the strong discontinuity
regime is imposed directly after the end of the elastic regime with the discontinuity surface defined as perpendic-
ular to the maximum principal stress. This is a typical behavior of material failure in isotropic brittle materials.
Quadrilateral linear isoparametric boundary elements are used together with hexahedral constant cells with em-
bedded discontinuity that were placed aligned along the crack surface. The implementations were performed at
the collaborative open source system INSANE (INteractive Structural ANalysis Environment) [10].

2 Strong discontinuity approach

The incorporation of strong discontinuity approach in the standard integral equations requires some adapta-
tion. Its development starts with the consideration of a solid (domain Ω, boundary Γ), with a discontinuity surface
S (unit normal vector n), surrounded by an arbitrary sub-domain Ωϕ ⊂ Ω, as represented in Fig. 1.
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Figure 1. Solid with discontinuity surface S in an arbitrary sub-domain Ωϕ

For a material point X, an arbitrary function ϕ(X) is defined in Ωϕ (see section 5.1), with ϕ(X) = 0 in
Ω−\Ω−ϕ and ϕ(X) = 1 in Ω+\Ω+

ϕ . At a given instant, when the strong discontinuity is completely developed, the
displacement and the total strain field can be described, together with the well known Heaviside function (H), by
the regularized expression detailed in [7, 8] as follows:

ui(X, t) = ūi(X, t) + ϕ(X)[[ui]](X, t)︸ ︷︷ ︸
ûi(X,t)

+
[
HS(X)− ϕ(X)

]︸ ︷︷ ︸
Mϕ

S(X)

[[ui]](X, t) = ûi(X, t) +Mϕ
S(X)[[ui]](X, t) (1)

εij(X, t) =
1

2
(ûi,j + ûj,i)︸ ︷︷ ︸

ε̂ij

+
Mϕ
S

2
([[ui,j ]] + [[uj,i]])−

1

2
(ϕ,i[[uj ]] + ϕ,j [[ui]])︸ ︷︷ ︸

−εϕij

+
δS
2

(
[[ui]]nj + [[uj ]]ni

)
(2)

where ūi(X, t) is the regular part of the displacement field, [[ui]](X, t) is the displacement jump component on the
discontinuity surface, and ûi(X, t) represents a continuous function. Complementing, Mϕ

S(X) takes zero value
everywhere in Ω, except in Ωϕ. Also, ε̂ij is the regular strain and εϕij has null value outside the sub-domain Ωϕ.
Finally, the last term in eq. 2 is restricted to the discontinuity surface, where nj are components of its unitary
normal vector, and δS represents the Dirac delta function over S.

For the continuity condition of the traction vector at the discontinuity interface, for a given instant of time,
the following equation must be satisfied for points at the discontinuity surface:

fi(ε̂ij , [[ui]], [[ui,j ]]) =
{
Eoijkl

[
ε̂kl − εϕkl([[ui]], [[ui,j ]])

]
− σSij(εij)

}
nj = 0 (3)

where σSij represents stress components on S, and Eoijkl corresponds to the constitutive linear elastic tensor.
The domain have to be discretized only where the discontinuity is supposed to occur, i.e., the subdomain

Ωϕ. Inside each cell with embedded discontinuity, each component εϕij is a function of the displacement jump
components [[ui]] only, once they can be assumed to be constant inside each cell. Thus, for a given regular strain
ε̂ij , fi ≡ fi([[ui]]) = 0. These components can be evaluated iteratively through the linearisation of eq. (3). Then,
for a given [[ui]](ε̂ij) achieved from the solution of eq. (3), a constitutive regularized equation can be obtained, as
follows:

σ̃ij(ε̂ij) = σ
Ω\S
ij

(
ε̂ij − εϕij([[ui]])

)
= Eoijkl(ε̂kl − ε

ϕ
kl) (4)

3 Implicit BEM formulation

Three boundary integral equations: the Somigliana’s identity for displacements at internal points, the dis-
placement boundary integral equation and the integral equation for internal strains, can be rewritten with the
discontinuity terms. Once natural and essential boundary conditions are applied at the discretized boundary, those
three equations can be rearranged in the following discrete equations:
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{ ˙̂uΩ} = [Au]{ẋ}+ [Bu]{ẏ}+ [Quεϕ ]{ε̇ϕ} (5)

[A]{ẋ} = [B]{ẏ}+ [Qεϕ ]{ε̇ϕ} (6)
{ ˙̂ε} = [Aε]{ẋ}+ [Bε]{ẏ}+ [Qεεϕ ]{ε̇ϕ} (7)

where {ẋ} and {ẏ} are, respectively, the boundary unknowns and the prescribed values of displacement ˙̂ui or
traction ṫi, while {u̇Ω} and { ˙̂ε} are relative to internal collocation points. The term {ε̇ϕ} represents the inelastic
strain components and matrices referenced by [A], [B] contain the integrals over the boundary elements, adding
the free term cij where appropriate. Matrices [Q] hold the integrals over internal cells, adding, conveniently, the
free terms F εεijkl (which arise when the integral equation for internal strains is obtained) into [Qεεϕ ].

Following the implicit BEM procedure, eq. (6) can be solved for {ẋ} and substituted into eq. (7), giving:

{ ˙̂ε} = [N ε]{ẏ}+ [M ε
εϕ ]{ε̇ϕ}; with: [N ε] = [Aε][A−1][B] + [Bε] and [M ε

εϕ ] = [Aε][A−1][Qεϕ ] + [Qεεϕ ] (8)

Regarding the rate independent constitutive damage model considered in this work, time evolution of non-
linear analysis can be considered as finite incremental differences. Hence, for the i-th increment, eq. (8) turns:

{ε̂}i = λi[N ε]{y}+ [M ε
εϕ ]{εϕ}i (9)

where the load factor λi is a cumulative scalar value for load increment, defined by the control method employed.
In a given step i, an equilibrium (or residual) vector {Q}i can be defined as a function of the regular strains

and the load factor {Q(ε̂i, λi)}i as follows:

{Q}i = λi[N ε]{y}+ [M ε
εϕ ]
(
{ε}i − [Eo]−1{σ̃(ε̂)}i

)
− {ε̂}i (10)

where [Eo] represents the linear elastic constitutive relationship matrix and {σ̃(ε̂)} is the stress vector, obtained
from the regular strains, as stated in eq. (4): the regularized constitutive equation.

The equilibrium condition set in eq. (10) has to be verified at each load increment. This can be performed
numerically through the Newton-Raphson’s method. A detailed description of this incremental-iterative solution
strategy, and the control method employed can be seen in [2].

4 Interface constitutive model

An isotropic damage constitutive model is used here to represent damage dissipation in finite regions of a solid
domain, over the discontinuity surface. The usual expressions for this model are summarized in many references
(e.g. Oliver et al. [11] and refs. [7–9]). The set of expressions encompasses: free energy, constitutive equation,
damage variable, internal variable evolution law, damage criterion, loading-unloading conditions and softening
law.

Regarding the relationship between stress and strain rates, it is given through a constitutive tangent tensor
Etijkl, which is equal to Eijkl for unloading (or neutral load). Thus:

σ̇Sij = Etijklε̇kl = Eijklε̇kl + Ėijklεkl ; where Etijkl = Eijkl −
(
∂D

∂r

)(
∂τε
∂εkl

)
Eoijrsεrs (11)

with r representing the strain-like scalar internal variable, and D the damage variable. For the equivalent strain τε
this work used the expression presented in [11], i.e., τε =

√
ε+ijE

o
ijklεkl, in which, the tensor ε+ij =

∑3
k=1(〈εk〉êk⊗

êk) is defined in a coordinate system aligned with the principal strain directions: εk represents the k-th principal
strain, êk is the unit vector in the corresponding principal direction, and 〈·〉 refers to the Macaulay brackets.
Complementing, the exponential softening law for the strong discontinuity regime, used here, was presented in [6].

5 Numerical implementation features

The analysis of solids by BEM requires the discretization of its boundary into elements, where the dis-
placements and tractions are approximated. This work considers the use of isoparametric quadrilateral boundary
elements, with linear function assumed for the variation of the known (and unknown) boundary values and the
boundary shape.

Hexahedral cells with constant function, compatible with uniform displacement jump inside the cell (see
eq. 2), are used in this work. One functional node is placed at the centroid of each cell (collocation point ξc).
Each cell has the geometry parametrized by conventional linear shape functions (Mα), and its geometrical vertex
nodes (α), Fig. 2a. For each cell, regular integrals are performed through standard Gauss quadrature, based on
the criterion presented by Eberwien et al. [12]. Integrals with weakly singular kernels are evaluated through the
techniques presented by Lachat and Watson [13]. For strongly singular integrals the technique proposed by Gao
and Davies [14] is applied.
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5.1 Cells with embedded discontinuity

Strong discontinuity dissipative effects are restricted to the sub-domain Ωϕ, which needs dicretization. For
constant cells, the field εϕij has only one value inside each cell, i.e., εϕij ≈ εϕ,c for X ∈ Ωc. The discontinuity
surface inside a cell is, therefore, described by one plane with a unitary vector normal (n) defining its orientation
(see Fig. 2c). A very small scalar parameter, h, is used to regularize the Dirac delta function.

The function ϕ(X) inside a cell can be expressed from the usual geometric parametrization functions (Mα),
as they are defined by values one or zero at nodes. The summation is taken over the interpolation functions
associated to the geometric vertices located at Ω+

c side of the cell (see Fig. 2c).
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Figure 2. Domain discretization: (a) Hexahedral cell in natural coordinates ηi, geometric nodes (◦) and functional
node (•); (b) example of boundary and domain discretization; (c) cell with embedded discontinuity.

5.2 Displacement jumps

Inside each cell, the displacement jump components on the discontinuity surface are considered constants,
i.e., [[ui]](X) ≈ [[uc]] for X ∈ Ωc. These values are obtained from the numerical solution of eq. (3). For this
purpose, the inelastic strains at a point inside a cell (εϕ,c) can be written in terms of the displacement jump as:

{εϕ,c} = [∇sϕ]{[[uc]]} (12)

The iterative method of Newton-Raphson is employed for the solution of eq. (3), in a given particular state of
regular strain, {ε̂c}. Its linearised form is given by:

{f}j−1 + [N̄ c]T
[
− [Eo][∇sϕ]−

[
∂σS

∂ε

]
j−1

[
1

h
[N c]− [∇sϕ]

]]
{δ[[uc]]}j ≈ {0} (13)

where [Eo] corresponds to the constitutive linear elastic tensor Eoijkl, the parameter h is a very small scalar used to
regularize the Dirac delta function (and appears in the constitutive model softening law), j is an iterative index, and
the term

[
∂σS

∂ε

]
is the matrix form of the tangent operator of the constitutive model used to represent the dissipative

effects over the discontinuity surface S, given in eq. (11). Furthermore, expressions for [N̄ c]T , [N c] and the terms
in [∇sϕ] are:

ϕ,i =
∂ϕ

∂ηk

∂ηk
∂Xi

=

(
∂Mα

∂ηk
Xα
i

)−1(
∂

∂ηk

[∑
α+

Mα+

])
(14)

[N̄ c]T =

n1 0 0 n2 n3 0
0 n2 0 n1 0 n3

0 0 n3 0 n1 n2

 ; [N c] =

n1 0 0 1
2n2

1
2n3 0

0 n2 0 1
2n1 0 1

2n3

0 0 n3 0 1
2n1

1
2n2


T

(15)

5.3 Regularized constitutive model in a cell

The nonlinear procedure to evaluate the displacement jump is performed inside each cell with embedded
discontinuity, every iteration during the solution of eq. (10), in order to update the regularized stress, {σ̃}, given
by eq. (4). Thus, it is convenient to present here the discrete version of eq. (4) in a cell, i.e.,

{σ̃(ε̂c)} = [Eo]({ε̂c} − {εϕ,c}) = [Eo]({ε̂c} − [∇sϕc]{[[u]]}) (16)

Moreover, the tangent operator associated to this regularized constitutive model, is also required for the
nonlinear solution of the equilibrium condition vector, eq. (10), and can be obtained after differentiation of eq. (16).
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6 Activation of cells during the process

The internal region where dissipative effects happen has to be discretized into cells. These cells are part of
the discrete model, and its respective vectors refereed to displacement rate, strain rate and initial fields, are all
associated to internal points. Such vectors can be present in the matrix systems since the first step of the nonlinear
analysis, or they can be added gradually during the loading process, according to the activation of the cells. The
use of progressive activation allows the use of the current approach coupled with a tracking path algorithm to
determine, during the process, the position of new cells, as done in [6–9] for two-dimensional problems.

For the gradual activation, some vectors have to be expanded, by introducing the respective subvectors relative
to the new added cell: { ˙̂uΩ

N}, { ˙̂εN} and {ε̇ϕN}. Then eqs. (5), (6) and (7) become: ˙̂uΩ

˙̂uΩ
N

 =

 Au

au

 {ẋ}+

 Bu

bu

 {ẏ}+

 Quεϕ quC

quR quRC

 ε̇ϕ

ε̇ϕN

 (17)

[A]{ẋ} = [B]{ẏ}+
[
Qεϕ qεϕ

]{
ε̇ϕ

ε̇ϕN

}
(18) ˙̂ε

˙̂εN

 =

 Aε

aε

 {ẋ}+

 Bε

bε

 {ẏ}+

 Qεεϕ qεC

qεR qεRC

 ε̇ϕ

ε̇ϕN

 (19)

where the coefficients of the new submatrices have to be evaluated using different source points and regions of
integration: [qεϕ ] are evaluated considering source point at boundary; [quC ] and [qεC ] are evaluated considering
source point at existent internal points; [quR], [qεR], [quRC ], [qεRC ], [au], [bu], [aε] and [bε] are evaluated considering the
added source (internal) points. For the coefficients [au], [bu], [aε], [bε] integrations are performed in the boundary
elements; for the coefficients [quR], [qεR] integrations are performed in the existent cells; and for the coefficients
[qεϕ ], [quC ], [qεC ], [quRC ], [qεRC ] integrations are performed in the added cell.

The matrices in eq. (8) also have to be expanded, as follows:[
N ε

nε

]
=

[
Aε

aε

]
[A]−1[B] +

[
Bε

bε

]
⇒ [nε] = [aε][A]−1[B] + [bε] (20)

 M ε
εϕ mε

C

mε
R mε

RC

 =

 Aε

aε

 [A]−1
[
Qεϕ qεϕ

]
+

 Qεεϕ qεC

qεR qεRC

 (21)

with: [mε
C ] = [Aε][A]−1[qεϕ ] + [qεC ] ; [mε

R] = [aε][A]−1[Qεϕ ] + [qεR] ; [mε
RC ] = [aε][A]−1[qεϕ ] + [qεRC ].

Some more similar expansion of matrices are needed, from the equations arisen from handling eq. (5) and
eq. (6). It is worth to mention, that the existent coefficients from all these matrices do not need to be recalculated.
The new submatrices are just added accordingly, by augmenting rows and columns of the existent matrices.

7 Numerical simulation

This example presents the analysis of a bar under simple tension, with a circular corner notch. Dimensions
and material properties are presented in Fig. 3a. The failure surface is supposed to occur at the horizontal notch
plane highlighted. Hexahedral cells with embedded discontinuity were applied for the discretization of this region
of the solid. Exponential damage evolution was considered for dissipation effects. The control method adopted to
drive the incremental-iterative procedure is the direct displacement, with a convergence tolerance for eq. (10) fixed
as 1× 10−4. An assumed value of 0.01mm was adopted for the parameter h in eq. (13).

Three meshes, with different refinements, were considered as shown in Fig. 3b (only cells are shown). Dis-
placement control of corner point A (Fig. 3a) was adopted for the nonlinear analysis progress. Results for the
displacement equilibrium path of point A and an intermediate point B are plotted at Fig. 4. A theoretical refer-
ence value for critical fracture stress σfcrit is also shown in Fig. 4. It was calculated as a particular case of the
stress-intensity solution for a quarter-elliptical corner crack, given by Anderson [15].

The peak stress achieved in the equilibrium path converges to a value a little bellow the reference theoretical
critical fracture stress. The increase in mesh refinement provides a good representation of the unload behavior.
Also, from the results for point B (not a control node) it is possible to note a typical snap-back of the equilibrium
path. The gradual activation of discontinuity at the cells on the fracture plane, in different load steps is schemati-
cally presented in Fig. 5.
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Figure 3. Prismatic bar under simple tension, with a circular corner notch: (a) dimensions and material properties;
(b) meshes for internal discretization

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Displacement (mm)

Te
ns

io
n
σ

(M
Pa

)

mesh 1 (point A)
mesh 2 (point A)
mesh 3 (point A)
mesh 1 (point B)
mesh 2 (point B)
theoretical σfcrit

Figure 4. Displacement equilibrium path for control point A, for point B, and the theoretical reference.

Step 26
Step 27

� = 0.479
� = 0.497

Step 28
Step 29

� = 0.513
� = 0.525 Step 31 � = 0.358 Step 32

Step 34
� = 0.316
� = 0.276

Step 35 � = 0.272
� = 0.256Step 36

Step 37
Step 38

� = 0.239
� = 0.266

Step 40
Step 41

� = 0.212
� = 0.199

Step 43
Step 44

� = 0.187
� = 0.179

Step 46
Step 47

� = 0.172
� = 0.161

Step 50 � = 0.148
� = 0.140Step 52

Step 53
Step 55

� = 0.138
� = 0.115

Step 56
Step 61

� = 0.106
� = 0.077

Step 67
Step 68

� = 0.0751
� = 0.0753

Step 77
Step 85

� = 0.0491
� = 0.0511

� Step 30 � = 0.529

Figure 5. Gradual activation of discontinuity at the notch plane (mesh 2)

8 Conclusions

This work presented some aspects of the usage of implicit formulation of the BEM associated with the strong
discontinuity and a damage constitutive model for three-dimensional analysis of solids. The numerical example
showed the capability of the implemented algorithm to describe the equilibrium path in a typical fracture mechanics
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problem. A progressive activation of discontinuity inside the cells was observed, according to the evolution of
stress values in the domain. Despite the simple example, this is an important aspect for the analysis of crack
propagation in solids. The potential of the approach allows its sophistication through the implementation of a
tracking algorithm for automatic generation of cells in the domain, in order to reproduce a crack path. All these
stages of evolution has already been successfully developed for bi-dimensional analysis, but are still in course for
three-dimensional problems.
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