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Abstract. The present contribution introduces a formulation for 3D steady-state potential and elastostatics prob-
lems that ends up with the analytical handling of all integrals necessary in an implementation using linear triangle
(T3) elements – whether regular, improper, quasi-singular, singular or hypersingular integrals are involved. The
boundary element matrices – including the discontinuous term of the double-layer potential matrix – are obtained
in a straightforward way with the use of analytically pre-evaluated integrals. Results at internal points that may
be located arbitrarily close to the boundary are also given analytically. The paper describes the main concepts and
computational features of the proposed formulation and presents an example of 3D potential problem to illustrate
the most challenging topological configurations one might deal with in practical applications. For source points
sufficiently far from a boundary element an adaptive numerical integration scheme is also proposed for the sake of
computational speed – and how far a point should be in order to be considered far is also discussed.
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1 Introduction
The collocation boundary element method (BEM) [1] has been recently reconceptualized by the first au-

thor for general 2D and 3D problems [2], who has also proposed a general, simple and unified procedure for the
machine-precision treatment of all kinds of singularities that may occur in 2D steady-state potential and elastostat-
ics problems [2].

The numeric issues for 3D problems are of a completely different nature [3, 4]. The triangle-to-square coor-
dinate transformation for the evaluation of improper integrals in a computationally economical way seems to have
been firstly suggested for BEM applications in [5]. More literature references to the theme are given in [3, 4].

Simple analytical results are obtained for all kinds of integrals required for 3D steady-state potential and
elastostatics problems – for the boundary discretized with flat segments. This includes the evaluation of results
at arbitrarily placed internal points, with hypersingularities also dealt with analytically. The case of a generally
curved boundary segment is still not considered by the authors – and may not be mastered in the present framework.
Although the proposed developments apply directly to elastostatics problems, space restrictions force us to draw
attention only to potential problems.

2 Problem formulation

The following developments, as outlined in [3, 4], apply to the adequate evaluation of integrals that may either
be improper or embed singularities or quasi-singularities. The source point 0 is indicated on the left in Fig. 1, where

r =

√
(x− x0)

2
+ (y − y0)

2
+ (z − z0)

2 is the distance from the singularity (0 or source) point (x0, y0, z0) ≡
(x(ξs, ηs), y(ξs, ηs), z(ξs, ηs)) to a generic (F or field) point (x, y, z) ≡ (x(ξ, η), y(ξ, η), z(ξ, η)), both in Carte-
sian coordinates and in terms of the indicated natural triangle coordinates (ξ ∈ [0, 1− η], η ∈ [0, 1]).

The triangle to sub-triangles transformations outlined on the right in Fig. 1 are – to the authors’ best knowl-
edge – a novel generalization of a transformation classically proposed in the literature on finite and boundary
element methods that uses a square-to-triangle degeneration in order to deal with a singularity [5]. Prior to pro-
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BEM/MRM 2021 - Valencia (virtual)

Figure 1. Representation of the quasi-singular source point 0 in the Cartesian space for a triangle element, and
description with two different systems of natural coordinates, (ξ, η) and (ξ̃l, η̃l) referred to the projection P of the
source point onto the triangle’s plane

moting an eventual singularity cancellation, the introduced coordinate transformation reshapes the integrals so
as they become eventually evaluated using a symbolic tool kit. For an analytical function f (ξ, η), integration is
carried out over transformed spaces corresponding to the three indicated sub-triangles, P̂12, P̂23 and P̂31,∫ 1

0

∫ 1−η

0

f (ξ, η) dξdη =

3∑
l=1

∫ 1

0

∫ 1

0

f
(
ξ(ξ̃l, η̃l), η(ξ̃l, η̃l)

) ∣∣∣Jl(ξ̃l, η̃l)∣∣∣ dξ̃ldη̃l, (1)

considered as degenerated square subspaces
(
ξ̃l ∈ [0, 1], η̃l ∈ [0, 1]

)
, l = 1, 2, 3, where one of the nodal points

of the unit square collapses in order to coincide with the point of singularity P(ξ = a, η = b) – the projection of
the source point onto the boundary element’s plane. The auxiliary coordinate systems (ξ̃l, η̃l) have origin at node
P and are oriented as indicated. Depending on the depicted values of a and b one or two of these triangles may be
void or correspond to negative areas, so that cases of real singularity and quasi-singularity are dealt seamlessly in
the same algorithm. In the presently proposed general approach, the singularity point 0 may be located outside the
(ξ, η) plane, as shown on the left in Fig. 1. The distance from the source 0 to a field point F on the element is the
hypotenuse 0F of the right triangle whose legs are the distances 0P from the source point to the plane and PF.

According to this proposition, the coordinates (ξ, η) are linear transformations of (ξ̃l, η̃l) [3, 4]:

[ξ, η]1 =
[
a(1− ξ̃1), ξ̃1(1− b− η̃1) + b

]
; |J |1 = ξ̃1a for sub-triangle ∆1 (2)

[ξ, η]2 =
[
ξ̃2(η̃2 − a) + a, b(1− ξ̃2)

]
; |J |2 = ξ̃2b for sub-triangle ∆2 (3)

[ξ, η]3 =
[
ξ̃3(1− a− η̃3) + a, ξ̃3(η̃3 − b) + b

]
; |J |3=ξ̃3(1− a− b) for sub-triangle ∆3. (4)

The ratio |J |l/r(ξ̃l, η̃l) is always finite, which justifies the classically proposed coordinate transformation.
However, the decisive advantage of this transformation for the present developments is the separation of terms of
the variables ξ̃l and η̃l, which enables the analytical evaluation of the problem’s key integrals [3, 4]. In fact, the
square distance ∆r2 ≡ 0F

2
= 0P

2
+ PF

2
of Fig. 1) becomes expressed for each subtriangle as

∆r2 = ∆r20 + c2l ξ̃
2
l ≡ ∆r20 +

(
ãlη̃

2
l + b̃lη̃l + c̃l −∆r20

)
ξ̃2l ≡ ∆r20 + c2l ξ̃

2
l , (5)

where ∆r20 ≡ 0P
2
. Since the triangle’s area cannot be void and integration is carried out only for a sub-triangle of

non-void area, following geometric properties are paramount in the analytical integral evaluations:

ãl > 0, c̃l > 0; ãlη̃
2
l + b̃lη̃l + c̃l > 0; 4ãlc̃l − b̃2l > 0. (6)

All particularities of sub-triangles with void or negative areas (then, void or negative integrals) are taken into
account by the Jacobian transformations given in eqns (2)-(4).

3 Evaluations for potential problems

Owing to space restrictions, the explicit expressions for the single- and double-layer potential matrices G and
H for 3D potential and elasticity [1] are not given. The developments for arriving at such expressions are actually
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relevant to show the kind of integrals we must deal with as well as how important it is to take the properties outlined
above into account [3, 4]. All integrals could be evaluated analytically using the mathematical software Maple1

and some ingenuity.
They are, schematically, for the single-layer potential matrix G:∫

1

0

∫
1

0

〈
1 ξ̃l ξ̃lη̃l

〉
√

∆r20 + c2l ξ̃
2
l

ξ̃l dξ̃ldη̃l, l = 1, 2, 3 for ∆r20 ≥ 0, (7)

and for the double-layer potential matrix H (integrals void for ∆r20 = 0):∫
1

0

∫
1

0

〈
1 ξ̃l ξ̃lη̃l

〉
(

∆r20 + c2l ξ̃
2
l

)3/2
ξ̃l dξ̃ldη̃l, l = 1, 2, 3; ∆r20 > 0. (8)

The above expressions are valid for potential results at internal points, as well. For gradient results, we have∫
1

0

∫
1

0


1 ξ̃l ξ̃lη̃l

· ξ̃2l ξ̃2l η̃l

· · ξ̃2l η̃
2
l

 ξ̃l dξ̃l(
∆r20 + c2l ξ̃

2
l

)p/2 dη̃l, p = 3 or 5, l = 1, 2, 3; ∆r20 > 0 (9)∫ ∫ 1 η̃l η̃2l

· 1/ξ̃l η̃l/ξ̃l

 dξ̃l
c3l

dη̃l, l = 1, 2, 3 for ∆r20 = 0. (10)

In the latter cases, when a singularity occurs due to ξ̃ in the denominator, the integration intervals become∫ 1

0

∫ 1−η

0

f dξdη =

∣∣∣J̃∣∣∣
1

∫ 1

0

(∫ 1

b
b+η̃1−1

(
f ξ̃1

)
dξ̃1

)
dη̃1 +

∣∣∣J̃∣∣∣
3

∫ 1

0

(∫ 1

b
b−η̃3

(
f ξ̃3

)
dξ̃3

)
dη̃3 for b < 0

∣∣∣J̃∣∣∣
2

∫ 1

0

(∫ 1

a
a−η̃2

(
f ξ̃2

)
dξ̃2

)
dη̃2 +

∣∣∣J̃∣∣∣
3

∫ 1

0

(∫ 1

a
a+η̃2−1

(
f ξ̃3

)
dξ̃3

)
dη̃3 for a < 0

∣∣∣J̃∣∣∣
1

∫ 1

0

(∫ 1

a+b−1
a+b+η̃1−1

(
f ξ̃1

)
dξ̃1

)
dη̃1 +

∣∣∣J̃∣∣∣
2

∫ 1

0

(∫ 1

a+b−1
a+b−η̃2

(
f ξ̃2

)
dξ̃2

)
dη̃2 for a, b ≥ 0.

(11)

Up to three cases are given in the first and third rows of the expressions on the right-hand side: a < 0 or a = 0
or a > 0 for b < 0 as well as (a = 0, b > 0) or a, b > 0 or (a > 0, b = 0) for a, b ≥ 0. One or two cases
are comprised in the second row: b = 0 or b > 0 for a < 0. Depending on

∣∣∣J̃∣∣∣
l
, as given in eqns (2)-(4), some

integrals may be void or negative. The integration limit ξ̃l → 0 is never reached.

3.1 Evaluation of the diagonal terms of the double-layer potential matrix

The evaluation of the block diagonal terms of matrix H involves in general the finite-part evaluation of
singular integrals – after an adequate interval normalization procedure – plus the addition of a discontinuous
term. Although a simple task for 2D problems [2], this may become computationally complicated and a source
of numerical inaccuracies for 3D problems. In the present framework of integrals evaluated analytically for flat
elements, however, we just create for a given source point s, such as node 3 in the illustration on the left in
Fig. 2, which is shared by five elements, a fictitious node (here indicated as 7) and evaluate analytically the
terms H3n for this small subdomain, with non-void results, according to eq. (8), only for the elements that share
the fictitious node. Moreover, if we choose this fictitious node to coincide with any of the nodes depicted as 1
through 6 in the illustration, two of the created triangles turn out to be void, which simplifies evaluations. After
that, the diagonal term H33 of the actual problem in the illustration is accurately evaluated by requiring that∑7
i H3i = 0. The possibility of a local concavity is duly accounted for by just setting, for a general source point

s, Hss ← frac(1 +Hss), where ”frac()” is the fractional part of a number.
1Maple 15. Maplesoft, a division of Waterloo Maple Inc., Waterloo, Ontario.
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4 A simple numerical illustration

4.1 Problem description

Figure 2 represents on the right a very irregular 3D domain with a cavity (drawing rotated with angles
ϑ = 1050, ϕ = 800), whose boundary is discretized with 16 linear triangle elements and 12 nodes. This is a
development of the numerical example presented in [3]. The Cartesian coordinates of these nodes are

Coord =


1 2 3 4 5 6 7 8

1 1 0.2 −1 −2 −1 0.5 −0.25

−0.5 0.4 0 0.5 0 −0.5 −1 −0.55/3

0.5 −0.5 1 1 −0.2 0.5 −1 0.05

9 10 11 12 1̃ 2̃ 3̃ 4̃ 5̃ 6̃

−0.3 −0.5 −0.4 0 −0.035 0.285 −0.075 0.16 1.04 −0.3

−0.2 −0.1 −0.3 0 −0.275/3 −0.5 −0.605/3 −0.02 0.42 −0.15

0.3 0.4 0.5 0.6 0.475 −0.05 1.055 1.075 −0.575 0.45

 , (12)

using the first row for the node numbering, in an array that also contains the coordinates of internal points 1̃, 2̃ and
external points 3̃, 4̃, 5̃, 6̃ at which potential and flow results are to be evaluated. The nodal incidence is

Inc =


1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 3 5 5 3 1 8 4 4 8 7 7 9 10 9 9

2 2 3 6 6 3 2 2 8 6 6 8 10 12 11 12

3 4 4 3 7 7 1 8 5 5 8 1 11 11 12 10

 . (13)
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Figure 2. Left: illustration of the scheme for the evaluation of the diagonal terms of H referred to node 3 by creating
a fictitious node 7 and working with the shown local subdomain; right: very irregular domain with internal points
1̃, 2̃ and external points 3̃, 4̃, 5̃, 6̃ at which potential and flow results are to be evaluated

It is worth observing that elements 6 (nodes [1 3 7]) and 12 (nodes [7 8 1]) are almost coplanar. Nodes
9-12 correspond to a cavity built up with elements 13-16 (node 10 is closer to the observer than nodes 9 and
11). The external point 6̃ is in the center of the cavity. All nodes and internal and external points are very close
to the boundary segments. Consistency check of the boundary element equation Gt = Hd for 3 linearly varying
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potential fields holds for 19 digits in a Maple implementation with 20 digits of computation precision. The internal
point 1̃ and the external points 3̃, 6̃ present complex quasi-singularities with respect to all 16 elements, with flow
evaluated according to eqn (9). The internal point 2̃ is on the plane of element 6 and the corresponding flow must
be evaluated in terms of all three sub-triangles as given in the second row on the right-hand-side of eqn (11), for
a = −0.1, b = 0.55, with negative area for sub-triangle 1. The external points 4̃ and 5̃ are in the intersection of the
planes given by elements 1 and 2. Flow results at point 4̃ require evaluations for element 1 (a = 0, b = −0.05)
over sub-triangles 2 (negative area) and 3, and for element 2 (a = 1.05, b = −0.05) over sub-triangles 1 and 2
(the latter with negative area), both cases according to the first row of eqn (11). Flow results at point 5̃ require
evaluations for element 1 (a = 0, b = 1.05) over sub-triangles 2 and 3 (negative area) according to the third row
of eqn (11), and for element 2 (a = −0.05, b = 1.05) over sub-triangles 1 (negative area) and 2 according to the
second row of eqn (11). Then, all possible cases of quasi-singularity and topology issues are numerically assessed.

For 3 linearly varying potential fields, accuracy of potential results at all six points is checked for about 18
digits. For flow results round-off errors unavoidably occur and accuracy is checked for at least 16 digits in the case
of points 1̃, 2̃, 6̃ and at least 13, 12 and 10 digits in the case of points 3̃, 4̃ and 5̃, respectively (results at external
points 3̃, 4̃, 5̃, 6̃ obviously compare to zero). These internal point assessments are summarized in Table 1.

Table 1. Summary of the results at internal points for the solid on the right in Fig. 2 submitted to 3 linear potential
fields – the operations with ∆1 . . .∆3 refer to eqns (10) and (11)

Point Type Planar to
element

(a, b)
∫∫ Potential

accuracy
Flow

accuracy

1̃ Internal – – eqn (9) 18 digits 16 digits

2̃ Internal 6→ [1, 3, 7] (−0.1, 0.55) −∆1 + ∆2 + ∆3 18 digits 16 digits

3̃ External – – eqn (9) 18 digits 13 digits

4̃ External 1→ [1, 2, 3]
2→ [3, 2, 4]

(0,−0.05)
(1.05,−0.05)

−∆2 + ∆3

∆1 −∆2

18 digits 12 digits

5̃ External 1→ [1, 2, 3]
2→ [3, 2, 4]

(0, 1.05)
(−0.05, 1.05)

∆2 −∆3

−∆1 + ∆2

18 digits 10 digits

6̃
External
(cavity)

– – eqn (9) 18 digits 16 digits

5 On the use of adaptive numerical quadrature

The literature on numerical quadrature schemes for 3D boundary element problems is vast and shall not
be explored here. In spite of recent attempts to develop efficient quadrature schemes for triangle elements, the
proposition by Dunavant [6] over three decades ago from developments started by Hammer et al [7] as early as in
the year 1956 seems unbeatable, as abscissas and weights are evaluated directly in triangle coordinates so that the
Jacobian of coordinate transformation is constant and does not add to an integrand’s complexity. Dunavant presents
in his paper a large table of abscissas and weights for the accurate evaluation of complete bivariate polynomials of
degrees 1 through 20 with 15 digits of precision. This scheme has been implemented in the present paper in order
to evolve from analytical to adaptive numerical quadrature with complete error control. (We have already evolved
further to a fast multipole implementation for the case of source point and boundary element very far from each
other – always with complete error control, as presented in a companion contribution to this conference.)

Figure 3 singles out on the right the triangle element #1 of the example above, according to the node inci-
dence of eq. (13) and the coordinates given in eq. (12). From the middle coordinate pointC0 = [2.2,−0.1, 1.]/3 of
the triangle’s nodes we draw a sequence of seven points along a horizontal line, si = C0+[1, 0, 0].10i, i = −3 . . . 3,
at which we evaluate potential and gradient results for three linear potential fields [x, y, z] independently applied to
the open domain and measured as potentials and gradients on the element surface. The vector of values in the fig-
ure displays the relative distances from these points to the triangle’s surface given as ∆ri/

√
A, i = 1 . . . 7, where

∆ri corresponds to OP on the left in Fig.1 and A is the triangle’s area. The Frobenius norms of potential and
gradient results for the three independent fields are then evaluated numerically, according to Dunavant’s scheme,
for the seven ”internal” points and compared with the target, analytical results obtained according to the previous
Sections. Since the applied potential fields are linear, the analytical results are accurate within machine precision
(20 digits, as implemented) and taking into account unavoidable roun-off errors, as shown in the previous Section.
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The accuracy assessment of the quadrature results for just one triangle is justified as we have in the evaluation for
a complete problem with a large number of elements the eventual occurrence of large errors affecting integrals of
small magnitudes – with no sensible conclusion to be drawn.
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Figure 3. Contribution of boundary data on the indicated triangle for the relative potential and gradient magnitude
results at seven internal points located at the indicated relative distances
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Figure 4. Relative potential and gradient quadrature (accuracy for polynomial degrees 5, 10, 15 and 20) error
results at the seven indicated internal points of Fig. 3 weighted with respect to the results at point #4

This seven distinct relative distances are given as the abscissas of the double logarithmic graph in Fig. 3, with
the ordinate displaying analytically evaluated potential and gradient Frobenius norms divided by the corresponding
values for point #4 – the only one that could be pictured, as shown on the right. The integral values for points very
close to the triangle are up to ten times the values for point #4 and decrease considerably as the points become
more distant, and this particularly for the gradients. With this knowledge we are now able to properly assess the
practical accuracy of Dunavant’s quadrature scheme by constructing the same Frobenius norms just introduced
for the analytical evaluations. Figure 4 shows weighted relative errors of the numerically evaluated potential and
gradient results at the seven ”internal” points, obtained according to the formula error = (numi− anali)/anal4,
i = 1 . . . 7, that is, weighted by the results for point #4 in order to include the relative magnitudes made evident
in the graph of Fig. 3. The quadratures are for Dunavant’s schemes accurate for complete bivariate polynomials
of degrees pd = 5, 10, 15 and 20. We see that for relative distances much smaller than 1 a numerical quadrature
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leads to absurd results, for relative distances from about 1 to 10 conditionally good results are achievable in terms
of some adaptive scheme, whereas for relative distances larger than 10 a very low order quadrature scheme does
the job satisfactorily. On the other hand, this already enters the realm of the fast multipole method!

6 Conclusions

The analytical developments of this paper for steady-state potential problems and using the T3 element apply
to elastostatics problems and flat Q4 elements, as well, requiring only some additional effort in the code imple-
mentation. A rather academical, but topologically challenging, example attests to the accuracy that is achievable
within machine precision and having round-off errors into account. We also assess the circumstances of combining
analytical evaluations for source point and boundary element close to each other – which includes evaluations at
internal points – with an adaptive numerical quadrature as the distances increase, in a way that enables complete
control of result’s precision. We already have an implementation that includes in the evolution from analytical
evaluations to adaptive numerical quadrature a fast multipole scheme for the simulation of problems with a very
large number of degrees of freedom.
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