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Abstract. As hitherto proposed in the technical literature, the boundary element modeling of cracks is best carried
out resorting to a hypersingular fundamental solution – in the frame of either the so-called dual formulation or the
displacement discontinuity approach –, since with Kelvin’s fundamental solution it would not be possible to deal
with the ensuing numerical and topological issues. A more natural approach would be the direct representation
of the crack tip singularity in terms of generalized Westergaard stress functions, as already proposed in the frame
of the hybrid boundary element method. Quite recently, we have been able to demonstrate that the conventional
boundary element formulation is in fact able to precisely represent high-stress gradients and deal with extremely
convoluted topologies provided only that the problem’s integrals be properly evaluated, which has turned out
to be the case. The reference literature on the present subject is briefly outlined along with the paper, which
includes the simplest scheme of evaluating stress intensity factors in terms of crack tip opening displacements
as a viable alternative to the J-integral. We propose that independently of configuration a cracked structure be
geometrically represented as it would appear in real-world laboratory experiments, with crack openings in the range
of micrometers or even nanometers, which would still be mathematically feasible – albeit not mechanically. In
fact, machine precision evaluation of all quantities may be always achieved and stress results consistently obtained
at interior points arbitrarily close to crack tips. The present developments apply to two-dimensional problems.
Some numerical illustrations show that highly accurate results are obtained for cracks represented with just a few
quadratic, generally curved, boundary elements – and a few Gauss-Legendre integration points per element. We
also investigate how different simulations of the crack tip shape affect results, which turn out to be more accurate
with the use of higher-order, such as quartic, boundary elements.
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1 Introduction

The study of fracture mechanics phenomena was inaugurated by Inglis [1] in the year 1913. Griffith [2]
introduced in 1920 thermodynamics concepts to formulate a fracture mechanics theory based on energy balance,
extended by Irwin [3] to metals with the concept of energy release rate and, on the basis of the developments
by Westergaard [4], also the proposition of stress intensity factors (SIF) [5]. The concept of a crack opening
displacement (COD) was proposed by Dugdale [6] in 1960 to account for yielding at the crack tip. In the year
1968, Rice [7] showed that the energy release rate may be obtained by means of the J-integral. The application of
these concepts to a practical problem depends on the adequate evaluation of the stress state around a crack tip. The
first boundary element development in the field may be attributed to Cruse [8] in the year 1971.

The second author and previous collaborators have already in part successfully arrived at an attempt on the
basis of the hybrid boundary element method to adequately represent the stress field around a crack tip in terms of
Williams’ series as well as of generalizations of Westergaard’s [4] stress functions [9–11].

More recently, a consistent formulation – actually a both conceptually and numerically long due correction
– of the conventional, collocation boundary element method (CBEM) was proposed [12, 13], according to which
a convergence theorem could be envisaged and the evaluation of results has turned out achievable within ma-
chine precision for internal points arbitrarily close to an elastic body’s boundary regardless of topology issues.
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The numerical implementation considers arbitrarily high-order boundary elements for 2D bodies of any shape
and topology as well as flat boundary elements of a three-dimensional body. The application of this consistent
formulation to 2D fracture mechanics problems was the subject of the second author’s M.Sc. thesis [14], which
showed that a generically curved crack may be numerically simulated exactly as if in a real-life experimentation,
with the faces distinctly modelled for arbitrarily small openings as long as the continuum mechanics is dimmed
applicable[15].

This short paper is a continuation of Dumont and Amaral Neto [16]: readers are referred to it for a brief
introduction to the problem and for evaluations using the J-integral for cracks in the open domain as well as in the
case of an inclined edge crack in a rectangular plate – not least showing that our results are arguably more accurate
than the best results found in the technical literature. We restrict our present assessments to the CTOD evaluation
of SIFs of straight and star shaped cracks in the open domain, as the local stress state around a crack is actually the
most relevant – and critical – issue to be adequately assessed. Nevertheless, we borrow an example from [16] to
illustrate an application to a mixed mode problem.

2 Stress intensity factors based on crack tip opening displacements

Since we are dealing with very accurate numerical approximations, we apply the CTOD technique to express
modes I and II SIFs in terms of the exact Westergaard’s function [4] for the relative opening and slip displacements,
∆u⊥ and ∆u=, of two opposite points of the crack face ideally – but not necessarily – as close to the tip as possible,
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as for plane strain state, for comparison with a straight crack of semilength a and the tip located on the right, as in
any of the configurations shown in Fig. 1 and such that the abscissa x increases from the crack tip to the left. We
also suggest the second-order approximation of this expression
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with two terms of the expansions [17] of the real and imaginary parts of the Westergaard’s functions indicated in eq.
(1). The technical literature usually only shows the first-order approximation, as for y → 0 and r/a→ 0 [6, 18].

Triangular Doubly smooth Smooth/inclined

A

B

A

BB

Smooth/parallel

A
B

Elliptical

B

Figure 1. Five possible local geometric configurations of the crack tip

The CTOD technique involves much lower computational costs than in terms of the J integral, as no stress
results at internal points need to be evaluated, although it is possibly less reliable [16], since displacement results
at boundary nodal points that are too close to the crack tip depend on the crack tip initial configuration and are
liable to oscillate [15]. This will be elucidated by means of a few numerical examples.

2.1 Straight crack in the open domain

Our presently available boundary element code models the crack’s faces as separated surfaces no matter how
close they are to each other [13, 16]. Modeling two crack surfaces as geometrically collapsed is in reach of our
developed tools, as all hypersingular integrals required in such numerical implementation are already part of our
code, which gives stress results at internal points within machine precision [13]. However, we are not so much in
a hurry to ultimate this particular implementation as collapsed crack surfaces are actually a physical impossibility
and we are able to account mathematically for distances in the nanometer range, as illustrated in the following.

The problem of a straight crack in the open domain was analytically solved by Westergaard and, since such
solution is just an idealization, we can presently simulate it only approximately. Several relatively successful
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attempts using almost collapsed ellipses, for instance, have already been carried out by the authors [9, 10, 14, 16].
We initially simulate a straight crack as the diamond shape on the left in Fig. 2 – and the triangular crack tip
configuration shown in Fig. 1 –, with each straight face of a quarter of the crack modeled with either 24 quadratic
or 12 quartic elements, thus with a total of 192 nodes (not taking advantage of symmetries). This – as well as most
cases reported in the literature – is a problem with Neumann boundary conditions. We actually have zero tractions
applied to the boundary but body forces corresponding to the indicated stress state at infinity to be considered in
the numerical implementation. We use 2b = 0.0015, 2a = 19.06 ⇒ b/a ≈ 7.87 × 10−5 and Poisson’s ratio
ν = 0.25. The relevant information are just b/a and ν.

Figure 3 presents the results for five numerical simulations in which the distance between two adjacent nodes
along a crack face increases from crack tip to the middle with geometric ratios 1.1, 1.2, 1.3, 1.4 and 1.5. This
leads to the closest distances from a node to the crack tip indicated in the first row of Table 1 and corresponding
extremely small distances between opposite nodes indicated in the second row. The mode I reference solution in
Fig. 3 is KI = σ

√
πa [19] as for a straight crack with zero opening. The graphs of Fig. 3 present on the left

relative errors in comparison with the target value and on the right the relative results for KI evaluated according
to eq. (1) for pairs of opposite crack face nodes located along the relative distance ≈ 0 < r/a ≤≈ 0.01. SIFs
evaluations using the two term approximation of eq. (2) are essentially the same, in the present case, as well as if
one considers just one term, as usually preconized. There is a plateau of best results for r/a ≈ 10−3 ∼ 10−2 also
corresponding to relative errors approximately 10−5 ∼ 10−3. Observe that using large ratios of increasing node
spacing – too abrupt interdistance changes of 40% and 50% – does not lead to better results even though the nodes
closest to crack tip are indeed very close, as given in the Table.

Table 1. Distances of the first node counting from crack tip as well as from opposite node for the crack on the left
in Fig. 2 modeled with the indicated ratios of increasing node spacing

Spacing ratio 1.1 1.2 1.3 1.4 1.5

Distance to crack tip 9.925× 10−3 3.016× 10−4 9.704× 10−6 3.690× 10−7 1.681× 10−8

Distance between nodes 1.562× 10−4 4.748× 10−6 1.527× 10−7 5.808× 10−9 2.647× 10−10

2𝑎

2𝑏
A

B

2𝑎

2𝑏

Figure 2. Diamond and star shaped cracks in the open domain for b/a→≈ 0

Results for quadratic elements and the same mesh discretization are about one order of magnitude less accu-
rate [15]. We used ng = 8 Gauss-Legendre points for the numerical evaluation of the regular parts of the integrals,
which is particularly important for the ratio 1.5, for instance. (Good convergence is checked when comparing
ng = 8 and ng = 10.) Our node generation algorithm considers how the distance between nodes vary (and not
element sizes) such that the Jacobian of coordinates transformation is not constant even in the case of a straight
element. The issue of how relatively close a source point must be to a boundary element in order to be considered
close – and then have the integrals adequately dealt with, according to Dumont [20], – has also been checked in
the present numerical assessments, and we find out that actually no special treatment is needed when such a rela-
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tive distance is larger then two. We have also carried out an h-convergence assessment of the proposed numerical
model and obtained precision errors demonstrably smaller than the ones the present graphs display.
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Figure 3. KI relative errors (left) and values (right) for the crack problem on the left in Fig. 2 for the triangular
crack tip configuration of Fig.1 and different ratios of internode increasing distances from crack tip

2.2 Straight crack in the open domain with modified tip configurations

In this study we use the same basic proportion b/a ≈ 7.87 × 10−5 and material property ν = 0.25 of the
previous example but keep the crack faces parallel while trying to accommodate the tip shape in different ways,
as shown in Fig. 1. In this figure, the triangular tip is just the tip of the previous model with a diamond shaped
crack, which is used for the sake of comparison with the other indicated geometries. The doubly smooth tip has
nodes A and B as the extremities of a unique boundary element that can be quadratic, cubic, quartic and so on,
with the indicated prescribed tangents and zero tangent derivatives leading to equation systems for the location of
the internal nodes. The smooth/inclined tip is similar to the previous one, except that the tangent at point B is not
prescribed but rather the tangent’s derivatives are set equal to zero. Finally, the smooth/parallel tip has horizontal
tangents and higher derivatives are set equal to zero in such a way that the vertical location of the internal nodes be
determined. Owing to the required inflection the latter geometry only works with cubic and higher order elements.
For the sake of completeness of the analyses we also consider the elliptical shape on the right in Fig. 1, which
has been the first shape considered in our path of dealing with fracture mechanics problems [9, 10, 14, 16]. In this
latter simulation the nodal points are located along an ellipsis of half axes (a, b) and the justification is that we
already expect a collapsed elliptical shape to be the most natural one coming from Westergaard’s developments.
The disadvantage of this model is that the resulting geometry with quadratic, cubic or quartic elements actually
leads to angulations between elements, which may cause disturbances of the local stress field.

Figure 4 shows the comparisons for the crack configurations of Fig. 1 using quartic boundary elements and
numerical integrations with ng = 8. Results with triangular and elliptical crack tip configurations present the
lowest errors. The doubly smooth and the smooth/inclined tip configurations do not seem to be competitive.
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Figure 4. KI relative errors (left) and values (right) for the crack on the left in Fig. 2 and the crack tips of Fig. 1

2.3 Star shaped crack in the open domain

The star shaped crack of Fig. 2 is modeled with 48 nodes along each of the eight faces (no advantage taken of
symmetries) and triangular crack tips, also considering ν = 0.25, thus much the same as for the previous example,
although with still smaller relative opening b/a = 10−5. The literature reference SIF values for b/a = 0 are
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KIA = σ
√
πa(1.0863− 0.2227λ) and KIB = σ

√
πa(−0.2227 + 1.0863λ) at tips A and B [19]. Figure 5 shows

SIFs results for the stress ratio λ = 0 using the CTOD eq. (2) with just one term (left), that is, considering y = 0
and r/a = 0, as well as the full eq. (1) (right) at tip A for simulations with quadratic and quartic elements and a
few different internode space increasing ratios. Our best results are consistently lower than the reference ones.

Error results for different λ ratios of stress application in Fig. 2 – as compared with Tada et al [19] – are
shown in Fig. 6 for the crack tips A and B and using the CTOD full eq. (1). We use quadratic elements and
internode distance increasing ratio 1.3. The results displayed at crack tip A for λ = 0 are the same ones of Fig. 5
but corresponding values cannot be shown for crack tip B. In fact, we should expect that some of the crack branches
close depending on the stress ratio λ, which is not considered Tada et al [19] in terms of the range of validity of
λ. One of our next analyses shall be the consideration of different values of the Poisson’s ratio ν, which influences
the crack tip openings and is duly taken into account in both eqs. (1) and (2).
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Figure 5. SIFs results using the CTOD eq. (2) with one term (left) as well as the full eq. (1) (right) at tip A of the
star shaped crack of Fig. 2 for simulations with quadratic and quartic elements
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Figure 6. Relative KIA and KIB errors for the star shaped crack of Fig. 2 under different λ loading combinations
using quadratic elements with the internode distance increasing ratio 1.3

2.4 Mixed mode analysis of an inclined edge crack [16]

This example is reproduced from Dumont and Amaral Neto [16] in order to just illustrate an application
to a mixed mode problem. Namakian et al [21] analyzed a rectangular plate of dimensions 444.5 × 177.8mm2

using two quite similar meshless implementations [results here referred to as (a) and (b)], with normalized modes
I and II SIFs KI and KII compared with another meshless model by Zhuang et al [22] as well as with the key
reference results by Murakami [23]. There is a 450 degree slanted crack of (very large) length 177.8/

√
2mm

starting 177.8mm from one border, so that two pieces of preserved 177.8 × 177.8mm2 squares are kept before
and after the crack formation. The plate is submitted to uniform normal stress along its short edges for plane strain
state and Poisson’s ratio ν = 0.25. The (KI ,KII) results found by these authors were apud [21] respectively
(1.830, 0.814) [21](a), (1.833, 0.819) [21](a), (1.778, 0.799) [22] and (1.856, 0.834) [23].

We ran two analyses, for edge openings 2 × 10−3mm and 2 × 10−5mm. The plate was simulated with
8 + 20 + 8 + 20 = 56 equally spaced quadratic elements along the borders and 22 quadratic elements along each
of the crack faces, for internode distance increasing from crack tip by a factor 1.15: the distance from crack tip to
the first node was 0.04034mm (≈ 0.00032 relative to crack length).

CTOD results in terms of eq. (2) with one term for opposite points along the crack face showed to be quite
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stable for a relative distance r/a ≈ 0.011 from crack tip, node 141, which corresponds to the opposite nodes 128
and 154, 2.204 × 10−5mm and 2.204 × 10−7mm apart for the edge openings 2 × 10−3mm and 2 × 10−5mm,
respectively. The corresponding (KI ,KII) values are (1.845, 0.824) and (1.837, 0.824), which are confronted in
Table 2 with the previously reported results. Our results lie between the results obtained by Namakian et al [21]
and Murakami [23] and are most probably the more reliable ones.

Table 2. Percentage errors in comparison with literature results [21–23] (from [16]).

[21](a) [21](b) [22] [23]

KI 0.82, 0.38 0.65, 0.22 3.8, 3.3 −0.59, −1.0

KII 1.2 0.61 3.1 −1.2

3 Conclusions

This short communication illustrates the application of the consistent collocation boundary element method
unaltered to two-dimensional problems of linear fracture mechanics. The implemented code deals with singulari-
ties of any degree of severity for any topological configurations, as illustrated in the first example for nodal points
at opposite crack faces that are just nanometers apart. We have already implemented the evaluation of stress inten-
sity factors in terms of the J-integral for the mode I case. Our focus here was the technique of crack tip opening
displacements, which is very expedite and easily generalizable although in principle more liable to geometric pe-
culiarities. We dedicated most part of our developments to the assessment of the adequate geometric configuration
of the crack tip for the simplest problem proposed and solved by Westergaard. In fact, the local geometry and
stress state are the relevant aspects to be dealt with, since taking the far field effect into account is a lesser issue.

Since we have complete control of the computational precision (machine precision is in reach of our develop-
ments), we are able to address the approximation aspects of the crack tip opening displacement technique itself and
the eventual influence of a material’s Poisson’s ratio on the stress intensity factor. We show that multiple cracks
can be seamlessly simulated and – owing to space restrictions – only in passing illustrate the case of a mixed mode
problem. We have already showed that there is no ill-conditioning related to crack faces that are just nanometers
apart. The present implementation may be easily generalized for combination with cohesive elements and there
are already developments in progress for the simulation of crack propagation. We have already experience in
dealing with the formation of plastic zones around crack tips in the frame of a hybrid boundary element formula-
tion in terms of generalized Westergaard functions and think that such developments in the present framework are
perfectly feasible and more straightforward.
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