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Abstract. This paper is part of a research work to implement, test, and apply a novel numerical tool that can simu-
late on a personal computer and in just a few minutes a problem of potential or elasticity with up to tens of millions
of degrees of freedom. The authors have already developed their own version of the fast multipole method (FMM)
for two-dimensional problems, which relies on a consistent construction of the single-layer potential matrix of the
collocation boundary element method (BEM) so that ultimately only polynomial terms (as for the double-layer
potential matrix) are required to be integrated along generally curved segments related to a given field expansion
pole. The core of the present paper is the mathematical assessment of the double expansions needed in the 3D
FMM. The 3D implementation is combined with a particular formulation for linear triangle elements in which all
integrations for adjacent source point and boundary element are carried out analytically. As a result, numerical
approximations are due exclusively to the FMM series truncations. This allows isolating and testing truncation
errors incurred in the series expansions – and thus for the first time properly assessing the mathematical features
of the FMM, as illustrated by means of an example. The complete solution of a mixed boundary problem using a
GMRES solver, for instance, is just an additional task and, although already implemented, is not reported herein.

Keywords: Fast multipole, Collocation boundary element method, 3D Potential problems, Numerical integration,
Analytical integration

1 Introduction

The fast multipole method [1, 2] is a powerful tool for dealing with very large computational mechanics
problems. Our team has already developed a consistent algorithm for general 2D problems [3, 4] with machine-
precision integration schemes and is now working on 3D problems [5, 6] with the combination of analytical eval-
uations for flat boundary elements [7, 8]. We develop in this short communication some conceptual aspects that
should make the fast multipole method more consistent and understandable mathematically. Although the imple-
mentation issues of the complete boundary element formulation are not shown, a simple but thoroughly assessed
example shall shed light on the practical application possibilities opened up in the present framework.

2 Problem formulation

We are looking for the expansion of the fundamental solution – for three-dimensional problems – about a
pole xc that is at the distance r = |x| from the source point xs, that is, x = xs − xc in the classical literature
notation, and to be evaluated at a field point xf at a distance ρ = |y| to the expansion pole, that is, y = xf − xc
(see the top left drawing in Fig. 1, which gives the vector orientations we are following in the developments):

u∗(xf − xs) ≡
1

4π |xf − xs|
≈ 1

4π

N∑
n=0

n∑
m=−n

S̄n,m(x)Rn,m(y) +O
(
ρN+1/rN+1

)
(1)
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up to a given level N of expansion and truncation order O
(
ρN+1/rN+1

)
, which may be immediately inferred

from the one-dimensional expansion, for instance: 1
xf−xs

= 1
xc−xs

∞∑
n=0

(
−xf−xc

xc−xs

)n
, and as detailed below, where

Sn,m(x)=
(n−m)!Pmn (cos θ)eimφ

rn+1
; Rn,m(y)=

Pmn (cosβ)eimα

(n+m)!
ρn; Pmn (x)=

(1−x2)
m/2

2nn!

dn+m

dxn+m
(x2−1)

n
. (2)

In these equations, Pmn (x) are associated Legendre functions (polynomials). Both Sn,m(x) and Rn,m(x) are
spherical harmonic functions. As reported by Gumerov and Duraiswami [1], the function name ”S” above stands
for source or sender and, coincidentally, also for singular (as r → 0), whereas ”R” means receiver as well as
regular, which is much appropriate. According to the notation in eq. (1), each level n = 0, 1, . . . , N comprises
2n + 1 terms. However, Sn,−m(x) = (−1)mS̄n,m(x) and Rn,−m(y) = (−1)mR̄n,m(y), m = 1 . . . n. The
expressions of Sn,m(x) and Rn,m(x) are preferably transformed to Cartesian coordinates, that is, x = xs − xc ≡
(x1, x2, x3)⇔ (r, θ, φ) and y = xf − xc ≡ (y1, y2, y3)⇔ (ρ, β, α), such that

x =< r cosφ sin θ, r sinφ sin θ, r cos θ >, y =< ρ cosα sinβ, ρ sinα sinβ, ρ cosβ > . (3)

Moreover, using the complex notation x = x1 + x2i, y = y1 + y2i we are able to express r2n+1S̄n,m(x) and
Rn,m(y) compactly in Cartesian coordinates, as illustrated for m = 0 . . . n, n = 0 . . . 4:

r2n+1S̄n,m(x)→

1 . . . .

x3 x̄ . . .

−|x|2 + 2x23 3x̄x3 3x̄2 . .

−9|x|2x3 + 6x33 −3x̄
(
|x|2 − 4x23

)
15x3x̄

2 15x̄3 .

9|x|4−72x23|x|
2
+24x43 −15x̄x3

(
3|x|2−4x23

)
−15x̄2

(
|x|2−6x23

)
105x3x̄

3 105x̄4

(4)

Rn,m(y)→

1 . . . .

y3
1
2y . . .

− 1
4 |y|

2
+ 1

2y
2
3

1
2yy3

1
8y

2 . .

− 1
4 |y|

2
y3 + 1

6y
3
3 − 1

16y
(
|y|2 − 4y23

)
1
8y3y

2 1
48y

3 .

1
64 |y|

4 − 1
8y

2
3 |y|

2
+ 1

24y
4
3 − 1

48yy3

(
3|y|2 − 4y23

)
− 1

96y
2
(
|y|2 − 6y23

)
1
48y3y

3 1
384y

4.

(5)

These expressions can be pre-evaluated for a large number N of expansion levels using a symbolic software, such
as Maple1 – and some ingenuity – and stored in arrays. In spite of the complex-variable notation, the indicated
sum for every value of n in eq. (1) becomes real. In fact, it has been checked that each expansion level n = 0 . . . N
in eq. (1) corresponds exactly to level n + 1 of the multivariate Taylor series expansion of 1/4π|xf − xs| about
xc, resulting in the truncation error O

(
ρN+1/rN+1

)
, as indicated. We must only pay attention to the orientation

of the vector xc − xs, as shown in the left scheme of Fig. 1, which is just a notation subtlety introduced in the
technical literature on the subject.

fx

cx
y

cx

0y

1y

sx

cx

x

1x

0x

Lx 1 0x x
sx

fxcx

r  x

  y

r

Figure 1. Basic scheme of an expansion about a pole xc and schemes for further expansions about a field pole x′c
and a source pole xL

1Maple 15. Maplesoft, a division of Waterloo Maple Inc., Waterloo, Ontario.
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3 Expression of the normal gradient to the boundary

3.1 Expansion using derivatives with respect to the source point

We propose to apply the complex notation for the derivatives of Sn,m(x) about the source point, so that just
one level more of terms Sn+1,m−1(x) needs to be pre-evaluated and stored in the evaluations:

∂S̄n,m(x)

∂x1
+ i

∂S̄n,m(x)

∂x2
= S̄n+1,m−1(x),

∂S̄n,m(x)

∂x3
= −S̄n+1,m(x). (6)

Making use of the notation ~n =< nx ny nz > as well as of n = nx+ iny for the components of the normal vector
to the boundary, the normal gradient of the potential field to the boundary turns out to be expressed as simply as

q∗ = −q∗xnx − q∗yny − q∗znz = k
∂u∗(x)

∂n
=

k

4π

[
∂u∗(x)

∂xf
nx +

∂u∗(x)

∂yf
ny +

∂u∗(x)

∂zf
nz

]
=

k

4π
<

[
N∑
n=0

n∑
m=−n

(
−S̄n+1,m−1(x)Rn,m(y)n̄+ S̄n+1,m(x)Rn,m(y)nz

)]
. (7)

3.2 Expansion using derivatives with respect to the field point

Another possibility is to write the derivatives of Rn,m(y) about the field point in complex notation

∂Rn,m(y)

∂y1
+ i

∂Rn,m(y)

∂y2
=

 −Rn−1,m+1(y) if − n ≤ m ≤ n− 2

0 otherwise

∂Rn,m(y)

∂y3
=

 Rn−1,m(y) if − n+ 1 ≤ m ≤ n− 1

0 otherwise,
(8)

which leads, from the expression of the normal gradient to the boundary developed in the first row of eq. (7), to

q∗ =
k

4π
<

N∑
n=1

(
n−2∑
m=−n

S̄n,m(x)Rn−1,m+1(y) n̄−
n−1∑

m=−n+1

S̄n,m(x)Rn−1,m(y)nz

)
. (9)

This equation corresponds to the findings in the technical literature, although the proposed compact format is more
convenient for code implementation. It remains to check whether it is correct, which is done in the next Section.

3.3 A numerical comparison

The developments in eq. (7), obtained from

∂u∗(xf − xs)

∂xf
= −∂u

∗(xf − xs)

∂xs
=

k

4π

N∑
n=0

n∑
m=−n

∂S̄n,m(x)

∂x
Rn,m(y) +O

(
ρN+1/rN+1

)
, (10)

correspond to expansions in terms of multivariate Taylor series expansions, as checked symbolically with the
Maple code. On the other hand, the technical literature shows the results that lead to eq. (9) as

∂u∗(xf − xs)

∂xf
=

k

4π

N∑
n=0

n∑
m=−n

S̄n,m(x)
∂Rn,m(y)

∂y
+O (?) for ρ� r, (11)

although in general omitting that we are dealing with a truncation. The latter expansion does not correspond to a
multivariate Taylor series expansions and one might wonder which approach is more accurate. This is assessed by
means of two examples, both for xf =<−11, 30.1,−30.1> and xs = 0, but different expansion poles, xc =<
−11, 30,−30.1> and xc =<−11, 40,−30.1>, which leads to the ratios ρ/r ≈ 0.02317 and ρ/r ≈ 0.19515.
Derivatives ∂u∗(xf − xs)/∂xf in the Cartesian coordinates are obtained according to eqs. (10) and (11), for
N = 0 . . . 10 expansion levels, and Frobenius error norms are plotted as shown on the left in Fig. 2. The solid,
black lines are the expected error orders (ρ/r)N+1 of a multivariate Taylor series expansion. The longdash, blue
lines correspond to eq. (10), and the dashdot, red lines follow from eq. (11). We suggest that the use of eq. (10)
should be preferred in a code implementation. However, the better results shown with eq. (10) cannot be proved
to be a rule, as we have checked that for a few geometric configurations and values of N eq. (11) performs better.
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Figure 2. Left: relative errors of eqs. (10) (longdash) and (11) (dashdot), using (ρ/r)N+1 (solid lines) as reference,
for N = 0 . . . 10; right: error assessments of eq. (13) (dashdot and dot) referred to averaged values of

∣∣S̄n,m(x)
∣∣,

n = 0 . . . 10 (solid), and compared with multivariate Taylor series expansions (longdash and dash lines)

4 Expansion of Rn,m(xf − xc) about a new field pole xc′

The expansion of Rn,m(xf − xc) in any of eqs. (1), (7), (9) for xf about a new pole xc′ can be exactly
expressed, since Rn,m(xf − xc) are polynomial terms, as

Rn,m(y)
←−−−−→

≡
n∑

n′=0

n′∑
m′=−n′

Rn−n′,m−m′(y0)Rn′,m′(y1)
←−−−−−−→

provided that |m−m′| ≤ |n− n′| , (12)

where y ≡ xf − xc = (xf − xc′) + (xc′ − xc) = y1 + y0 (see the middle drawing of Fig. 1). Observe that, for
successive expansions of the marked term, we characterize a level zero of expansion and follow from there on –
expanding Rn′,m′(y1)

←−−−−−−→
for y1 ≡ xf − xc′ = (xf − xc′′) + (xc′′ − xc′) ≡ y1 + y0 as the arguments of a recursive

function – until arriving at the highest level. The clause |m−m′| ≤ |n− n′| assures the existence condition
of Rn−n′,m−m′(y1) – which is void otherwise. We have checked that the above algorithm is equivalent to the
multivariate Taylor series expansion of the polynomial terms Rn,m(xf −xc) about xc′ . The above equation is not
only consistent but also elegant, as the structure of Rn,m(y)

←−−−−→
is preserved when recursively passed as a function

argument. This expression is given in Liu’s book [2] [actually very disguised in Eq. (3.55)], although without
a reference to the indicated existence condition. This equation is to be applied recursively until we arrive at the
highest level of the hierarchical pole development, when we proceed with the required boundary integrations.

5 Expansion of S̄n,m(xs − xc) about a new source pole xL

The expansion of S̄n,m(xs − xc) in any of eqs. (1), (7), (9) for xs about a new pole xL is [2]

S̄n,m(x) =

N∑
n′=0

n′∑
m′=−n′

S̄n+n′,m+m′(x0)Rn′,m′(x1)
←−−−−−−→

+O (?) for |x1| � |x0|, provided that n+n′≤N+1, (13)

where x ≡ xs−xc = (xs−xL)+(xL−xc) = x1+x0 (right drawing of Fig. 1). This expression is not equivalent
to a multivariate Taylor series expansion but only a numerical approximation with relative error increasing as n
increases.Terms of S̄n,m(xs − xc) up to level N + 1 are needed in the expansion, which is consistent with the
requirement set after eq. (6). This expression is also given in Liu’s book in a very disguised way – a M2L
translation, Eq. (3.57), where the multiplication (−1)n

′
is not applicable when using the argument (xs − xc) –
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and with no reference to the validity condition n+ n′ ≤ N + 1 given above. Observe that, if we are interested in
further translations of Rn′,m′(x1)

←−−−−−−→
, eq. (12) should be used and then no further approximations take place.

The graph on the right in Fig. 2 gives as reference values averaged
∣∣S̄n,m(x)

∣∣ ≡∑n
m=−n

∣∣S̄n,m(x)
∣∣/(2n+

1), n = 0 . . . 10 plotted as a solid, black line for xs =< −11, 30.1,−30.1 > and xc =< 0, 0, 0 >, and we
check that the magnitude of S̄n,m decreases with increasing n (although it is quite invariant with m = 0 . . . n
for a fixed n). We then carry out two numerical assessments, for expansions about xL =< −10, 30,−30 > and
xL =< −10, 40,−30 >, in such a way that |x1| / |x0| is either≈ 0.02317 or≈ 0.19515. The longdash, blue lines
are the relative errors for multivariate Taylor series expansions with error O(ρN+1/rN+1), whereas the dashdot,
red lines are relative errors obtained from eq. (13). Although they increase with increasing n, such errors, when
related to the largest, averaged values

∣∣S̄0,m(x)
∣∣, tend to be much smaller, as given by the dash, blue and dot, red

lines for multivariate Taylor series and eq. (13), respectively.

6 A simple numerical illustration of a complete FMM implementation

6.1 Problem description

A convex domain in the shape of a tetrahedron as in any of Figs. 3 is initially defined (Level 0) in terms of
four faces (triangles) and vertex (node) coordinates, with faces successively subdivided into four triangles each,
with the consequent creation of intermediate nodes, according to the following scheme:

Coords =


1 2 3 4

−3 3 0 0

−1.5 −1.5 1.5 0

0 0 0 4



Level Nodes Elements Edges

2 34 64 96

3 130 256 384

4 514 1,024 1,536

5 2,050 4,096 6,144

6 8,194 16,384 24,576

7 32,770 65,536 98,304

8 131,074 262,144 393,216

9 524,290 1,048,576 1,572,864

A succession of analyses is carried out for the implemented fast multipole algorithm with the adjacency
criterion Nc = 1, 2 or 3 and using N = 2, 4, 6, 8 or 10 Taylor expansion levels, according to eq. (1). The schemes
in Fig. 3 illustrate the case after three subdivisions, which corresponds to level 3 in the Table. This figure also
illustrates, for the green-colored triangle at the bottom face and adjacent to the frontal corner, that we first consider,
on the left, that only the elements that share a vertex are close to it (Nc = 1), whereas in the middle figure elements
are considered close when their parents are adjacent (Nc = 2). The right figure shows the case for adjacency of
their parents’ parents (Nc = 3). The fast multipole scheme is applied only for elements sufficiently far, that is, the
gray-colored elements in the figure as referred to the green-colored element.

6.2 Numerical assessments

Accuracy of the implemented fast multipole scheme is firstly assessed for a linear potential field u = x+y+z
applied to the boundary of this tetrahedron, with nodal potentials d and gradient parameters t evaluated for different
mesh refinements, as shown in the Table above. We initially carry out a control analysis in terms of the plain,
conventional boundary element method (CBEM) with all integrals evaluated analytically [7, 8], for which the
basic equation Hd = Gt should be exactly satisfied within machine precision. Since the code is implemented in
C++ with double precision, a relative error e = ‖Hd−Gt‖ / ‖Hd‖ > 10−15 is expected to occur and actually
increasing round-off errors take place as the number of degrees of freedom increases. This is observed in the graph
on the left in Fig. 4 for the error results marked as • related to refinement levels 2 through 6 of the Table. These
errors are our achievable, threshold accuracy we can expect in the numerical simulations to come.

Observe that the implementations must start with refinement levels Nc + 1 in the Table of Section 6.1.
Since the T3 element exactly reproduces a linear potential field and all integrations are carried out within machine
precision, the reported errors are due solely to the expansion truncations of the fast multipole scheme, which
are related to the truncation order at a given level N and and ultimately depend on Nc. Moreover, round-off
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Figure 3. Red-colored elements illustrated as close to the green-colored element on the bottom depending on how
restrictive we are in a hierarchical sequence with Nc = 1, 2 or 3
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Figure 4. FMM relative error results for applied potential fields u = x+ y + z (left) and u = xyz (right)

errors unavoidably occur with increasing node numbers, which is reflected by the ascending curves. These results
lead to the accuracy threshold of results achievable in an analysis for the considered domain submitted to a more
complicated potential field. In fact, a similar series of analyses carried out for an applied cubic field u = xyz,
with results displayed on the right in Fig. 4, shows that accuracy convergence follows the pattern of the CBEM
implementation until the threshold of the left graph is arrived at. Observe by comparing both graphs that results
would still improve if a more refined mesh had been considered for higher values of Nc and N .

Figure 5 shows on the left the computational time required for the matrix-vector multiplications Hd and Gt of
the previous analyses. The computational times are proportional toN2 andN for the CBEM and the fast multipole
operations, respectively, with time shifts perfectly acceptable for higher values of Nc and N , which attests to the
advantage of working in such a computational framework even if just a few hundreds of degrees of freedom are
required in a simulation. The storage allocation is also relatively small and increases proportionally to the number
of degrees of freedom in a loglog plot. The ultimate assessment of the proposed implementation is given in the
graph on the right in Fig. 5, as we plot for the applied cubic potential field the relative errors of the right graph in
Fig. 4 against the computational time on the left in Fig. 5 for a few values of Nc and N , also comparing with the
CBEM. We see that not only the required computational time using the FMM is much smaller for a required error
tolerance but also that the performance in terms of convergence rate is by far superior.

7 Conclusions

This short communication focused on the conceptual aspects and the convergence issues of the series ex-
pansions needed in the 3D fast multipole developments for potential problems in a way that is not found in the
technical literature. Important implementation details – particularly with respect to the recursive application of
eqs. (12) and (13) – had to be left to a posterior publication [6] as well as the not lesser aspects of the iterative
solution of a practical problem. A very simple example, for which all integrals could be evaluated within machine
precision, makes evident how important it is to have evaluation precision, computational effort and accuracy of
results completely under control.
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Figure 5. Computational time required for different types of analysis (left) and efficiency assessment of some
simulations in terms of error versus time
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