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Abstract. This paper presents the development of a crack propagation code to be implemented in a computer 

program based on the consistent boundary element method. This method has as its main characteristic an exact 

resolution of singularity problems inherent to the formulation. Furthermore, with this method, it is possible to 

represent the crack geometry of the models with openings in the micrometer range, similar to the cracks presented 

in laboratory tests. In this study, two models with different geometries are analyzed, using the same load, in order 

to represent pure mode I and mixed mode (modes I and II) loading configurations. The performance of this method 

is compared with the results of other papers found in the literature. As a crack propagation criterion, the maximum 

stress in the proximity of the crack tip and the stress intensity factor obtained through the crack tip opening 

displacement are analyzed. A study was also carried out on the propagation angle and crack stability, aiming at 

improving the accuracy of the model results and reducing the computational cost of the simulations. The study 

presented in this article is a work in progress. 
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1  Introduction 

Numerical models applied to engineering problems have gained extreme importance in the academic and 

professional spheres, becoming practically mandatory in some sectors of science. Computational development and 

the use of various mathematical techniques allow for the analysis of problems with precision, often obtained 

through the study of differential or integral equations. 

The boundary element method is a numerical technique that has wide application and presents extremely 

reliable results, using integral equations, presenting a reduction in the difficulty of modeling and computational 

effort due to the mesh discretization being located only in the region of the contour or surface of the studied object, 

reducing the system of equations utilized. 

For fracture propagation problems, the method is ideal as it is possible to extend the mesh along the 

propagation path without the need for major changes in the overall mesh processing, simply by adding new 

elements to the new structure configuration. 

The objective of this work is to apply the boundary elements method using a consistent formulation developed 

by Dumont [1, 2], which solves existing singularity problems in the formulation of the conventional method, as 

well as improvements in the interpolation process of surface forces. The entire code was developed in Maple [3].  

 

2  The consistent boundary element method and fracture mechanics 

2.1 Consistent formulation of the boundary element method 

The formulation of the boundary element method for elasticity problems can be found in several ways [1][4], 

from the development of the stress field equation that satisfies equilibrium in the domain: 
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 𝜎𝑗𝑖,𝑗 + 𝑏𝑖 = 0 (1) 

in such a way that, through the use of concepts and properties of the theory of elasticity, it is possible to find the 

fundamental equation of the boundary element method, presented in its matrix form: 

 Hd = Gt + b + ε (2) 

The matrix H is a kinematic transformation matrix that transforms displacements between two reference 

systems, G is a flexibility-type matrix, b is a vector of nodal displacements equivalent to the field forces applied 

in the system and ε is an error, the magnitude of which is defined by the mesh refinement, which affects the 

accuracy of the balance between surface forces and body forces, and the amount of rigid body displacements 𝑢𝑖𝑠
𝑟 , 

implicit in the fundamental solution of the displacement vector: 

 𝛿𝑢𝑖
∗ = (𝑢𝑖𝑚

∗ + 𝑢𝑖𝑠
𝑟 𝐶𝑠𝑚)𝛿𝑝𝑚

∗  (3) 

where 𝐶𝑠𝑚 are arbitrary constants, 𝛿𝑝𝑚
∗  are parameters of arbitrary virtual forces, with m indicating the location 

and direction of application of these forces, 𝛿𝜎𝑖𝑗𝑚
∗  and 𝛿𝑢𝑖𝑚

∗  are functions with global support of coordinates and 

directions of 𝛿𝑝𝑚
∗ , referred as source point (m), and the coordinates and directions where the effects of 𝛿𝑝𝑚

∗  are 

measured, referred as field point (i). 

The formulation of the consistent boundary element method is developed by considering an approximation 

of the term b, in equation 2, when knowing a particular solution [1] and through algebraic manipulations it is 

possible to find the consistent equation of the method, 

 H(d − dp) = 𝐺𝑎(t − tp) ≡ GPR
⊥(t − tP) (4) 

where PR
⊥ is the orthogonal projector onto the admissible space of surface forces. This equation uses the Somigliana 

identity, which is based on a system contour data to calculate displacements at internal points.  

In Dumont's work [1, 2], it is shown that the interpolation functions present in the formulation are generally 

polynomials of the natural coordinates of the contour, which works well for the displacements and for the 

calculation of the matrix H. However, it would not be possible for surface forces to be interpolated by a polynomial 

along a curved contour, as the forces vary with the inverse of the Jacobian |𝐽|, being proposed the replacement of 

the 𝑡𝑖ℓ polynomials, referring to the traction forces, by: 

 𝑡𝑖𝑙 ←
|𝐽|ℓ

|𝐽|
𝑡𝑖ℓ (5) 

where |𝐽|ℓ is the value of the Jacobian evaluated at the point ℓ. This format, which is actually part of the proposed 

consistency improvements, allows for a simpler, accurate execution of the numerical integration of the matrix G. 

2.2 Numerical integration of matrices H and G 

The fundamental solutions present in the development of the formulation of the boundary element method 

are determined by the fundamental solutions of Kelvin [5], for the plane state of deformations, indicating 

expressions for displacements, stresses and surface forces. Thus, matrices H and G can be presented by the 

following expressions: 

 H =
−1

2π(1−𝜈)
{∫

1

𝑟2 fdξ
1 

0
+ ∫

1

𝑟4 hdξ
1

0
} (6) 

where 

 f = (
1

2
− 𝜈) 𝑁𝑛

𝑜𝑒 [
𝑥𝑦′ − 𝑦𝑥′ 𝑥𝑥′ + 𝑦𝑦′

−(𝑥𝑥′ + 𝑦𝑦′) 𝑥𝑦′ − 𝑦𝑥′] (7) 

 h = (𝑥𝑦′ − 𝑦𝑥′)𝑁𝑛
𝑜𝑒 [

𝑥2 𝑥𝑦

𝑥𝑦 𝑦2] (8) 

and 

 G =
−1

8π𝐺(1−𝜈)
{∫ ln(𝑟)Ig dξ

1 

0
+ ∫

1

𝑟2 gdξ
1

0
} (9) 

where 
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 Ig = (3 − 4𝜈)𝑁ℓ
𝑜𝑒 [

1 0
0 1

] (10) 

 h = 𝑁ℓ
𝑜𝑒 [

𝑥2 𝑥𝑦

𝑥𝑦 𝑦2] (11) 

Evaluating the equations, it is possible to identify three types of singularities at different points of an element 

of the structure [6], illustrated in Fig. 1.  

 

Figure 1. Point locations of singularity, real and complex quasi singularity poles [6] 

For a boundary element, using a parametric variable ξ, a singularity can be located at the source point A, 

within the limits of integration, when 0≤ξ≤1. For the source point B there is a real quasi singularity, located in the 

element segment, outside the integration limit, but close enough, when ξ>1 or ξ<0. The source point C represents 

the situation of a complex quasi singularity, positioned outside but close to the integration segment, where ξ=a±bi. 

These singularities are properly evaluated in the works of Dumont [2, 7]. 

2.3 Fracture mechanics 

The elaboration of this work has important basic concepts of fracture mechanics, resulting from the study of 

the stress concentration effects produced by Inglis [8] through the analysis of elliptical holes in flat plates, 

submitted to tensile stresses. The study presented a singularity problem in its formulation: when the radius of 

curvature of the ellipse tends to zero, the stress value at the extreme point of the ellipse becomes infinite. 

Griffith [9] presented a solution to this problem using energy criteria, determining that for a crack propagation 

to occur, the potential energy Π in the plate, generated by the efforts, must be sufficient to exceed the energy Ws 

necessary to break the atomic bonds of the material. 

Irwin [10] presented an equivalent energy calculation model to the Griffith model, which consists of 

measuring the amount of energy available by crack increment, defined as an energy release rate: 

 𝐺 = −
𝑑Π

dA
=

𝜋𝜎2𝑎

𝐸
 (12) 

Based on the concept of energy balance presented by Griffith [9], Mai and Lawn [11] presented a study on 

the crack stability conditions, indicating that the crack stability depends on the second derivative of the system 

energy, being it greater or less than zero. 

 
d2Π

dA2 >
d2Ws

dA2
      (unstable) (13) 

 
d2Π

dA2 <
d2Ws

dA2
          (stable)  (14) 

Another important development in fracture mechanics is the stress intensity factor, in which authors such as 

Westergaard [12], Irwin [13] and Williams [14] developed expressions to calculate stresses in a body subjected to 

an external load, based on the configuration crack and loading present in the study. There are three loading modes 

that can act individually, or in combinations of two or three modes simultaneously in a crack [15]. 

Mode I of loading occurs with a tensile stress, normal to the crack plane. Mode II loading is characterized by 

in-plane shear of the crack. In this mode, the crack faces slide between each other. The loading mode III, on the 

other hand, presents shear outside the plane of the crack, performing a "tearing" movement of the plate. All loading 

modes are illustrated in Fig. 2. 



Consistent boundary element method for crack propagation problems 

CILAMCE-PANACM-2021 

Proceedings of the joint XLII Ibero-Latin-American Congress on Computational Methods in Engineering and 

III Pan-American Congress on Computational Mechanics, ABMEC-IACM  
Rio de Janeiro, Brazil, November 9-12, 2021 

 

Figure 2. Loading modes on a crack [15, adapted] 

In this work, the calculation of the stress intensity factor through the crack tip opening displacement for 

loading modes I and II will be applied using equations 15 and 16, demonstrated by Dumont and Amaral Neto [6]. 

 𝐾𝐼 =
𝐺√2𝜋

4(1−𝜈)
lim
𝑟→0

∆𝑢⊥

√𝑟
+ 𝑂(∆𝜃)2 (15) 

 𝐾𝐼𝐼 =
𝐺√2𝜋

4(1−𝜈)
lim
𝑟→0

∆𝑢=

√𝑟
+ 𝑂(∆𝜃)2 (16) 

where G is the shear modulus of the material, ν is the Poisson ratio, ∆𝑢⊥ and ∆𝑢= are relative opening and sliding 

displacements, respectively, between two opposite points on each face, located at the smallest possible distance r 

from the crack tip and O(Δθ)2 is the error inherent in the model. 

In this work, the developments of Westergaard [12] using a complex function, relating the local stress fields 

to global boundary conditions for certain situations, are also used. 

3  Methodology 

For this study, two models of two-dimensional plates with edge crack will be considered, illustrated in Fig. 

3, in order to initially perform a propagation analysis of only one crack per model. However, it is possible to carry 

out a propagation analysis in a central elliptical crack, with two or more cracks per model, following the criteria 

for verifying the occurrence of an extension.  

 During the design of the models, it was considered that the transverse elastic modulus, G = 80000, Poisson's 

coefficient, ν = 0.2, the number of Gauss points used in the integration of each element, ng = 4 and a numerical 

precision of 30 decimal places. The plates have height and width of the same length and are subjected to the same 

uniform tensile loading applied in the direction of the vertical axis. The first crack model reproduces mode I of 

loading, while the second model features a loading combination of mode I with mode II. 

A problem investigated in this study is the representation of the crack tip shape, considering that the crack 

faces have a fixed spacing, progressing in parallel to the tip formation. An analysis of the error variation of the 

stress intensity factor in relation to the relative distance r/a can be performed, compared with results available in 

the literature. The analysis is performed for quadratic, cubic and quartic boundary elements. 

  

Figure 3. Crack configurations analyzed for cubic elements [16] 

For the crack propagation process to occur, it is initially observed whether the material reaches the rupture 

strength adopted in the study, verified through the stress intensity factor. If it occurs, the propagation direction 
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angle is calculated. Using the maximum main stress criterion, Lacerda and Wrobel [17] present equation 17, where 

the angle is calculated with the values of KI e KII. 

 𝛼 = 2 tan−1[
1

4
(

𝐾𝐼

𝐾𝐼𝐼
± √

𝐾𝐼

𝐾𝐼𝐼

2
+ 8)] (17) 

The propagation adopted in this study consists of the addition of two elements at the top and bottom faces of 

the crack, with the same horizontal dimension as the tip element of the crack, ∆𝑙. The use of two elements is for a 

better representation of the propagation process, an angle α with a positive or negative value can be used, and even 

allows for angles greater than 90º.  The crack increment is applied previous to the element belonging to the tip, on 

both sides, moving the crack tip to a new location, as shown in Fig. 4. 

 

Figure 4. Increment of a propagated crack at an angle α [16] 

With the increment of four elements per propagation step, the numbering of the elements and their respective 

nodes, as well as the data assigned to them, need to be changed. To optimize the execution of the program, only 

the nodes of the elements at the end of the crack will have their data and connectivity changed, dispensing the 

reprocessing of most of the data from the matrices used in the program. The elements and nodes added in the 

increment will follow the numbering of the structure as shown in the local example, illustrated in Fig. 5, of a mesh 

at the tip of the crack, without changing the order of mesh numbering. 

 

Figure 5. Crack numbering before propagation (blue) and after propagation (red) [16] 

After adding the increment, iterative techniques must be used to add new degrees of freedom to the system 

used in the program. 

4  Results 

To calculate the stress intensity factor, it was necessary to apply a correction to the displacement data obtained 

by the program, finding values related to the crack axis, impacting mainly in the case of slanted cracks. Using 

global coordinates, the following equations were used: 
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 𝑈⊥ = 𝑈𝑦𝑐𝑜𝑠𝜃 − 𝑈𝑥𝑠𝑒𝑛𝜃 (18) 

 𝑈= = 𝑈𝑦𝑠𝑒𝑛𝜃 + 𝑈𝑥𝑐𝑜𝑠𝜃 (19) 

where 𝑈⊥ e 𝑈= are the opening displacement and the shear displacement of a point with respect to the axis of a 

crack inclined at an angle θ. 

A study was also carried out on the equations regarding the stress intensity factor calculated through the crack 

tip opening displacement. A model formed by a plate with dimensions 444.5x177.8 was used, containing a crack 

inclined at 45° with a total length of 177.8/√2, with an origin located at 177.8 from an edge and a uniform tension 

applied to the smallest face. For the tests, 4 Gauss points were used, transversal elasticity modulus G equal to 

80000, Poisson ratio equal to 0.25, quadratic elements and precision of 20 decimal places. The mesh generated by 

the program is illustrated in Fig. 6. 

 

Figure 6. Mesh generated by the program [2], with a more refined discretization at the crack tip 

Results of the program were compared with data presented in the literature. The reference values found in 

the literature for KI and KII are shown in Table 1, as well as the percentage error of the values found with the 

program (1.828 for KI and 0.814 for KII) compared to the values presented by other authors. 

Table 1. KI and KII values and percentage error to literature results 

 [18] (Example 1) [18] (Example 2) [19] [20] 

 Value Error (%) Value Error (%) Value Error (%) Value Error (%) 

KI 1.830 0.109 1.833 0.273 1.778 -2.812 1.856 1.509 

KII 0.814 0 0.819 0.611 0.799 -1.877 0.814 2.398 

 

On the crack propagation direction, initially an alternative method was used to verify the maximum stress, 

by applying internal points at a small distance around the crack tip, positioned in the shape of a semicircle. In the 

tests, the semicircle is formed by 40 internal points, having a range of 180º, with a radius of 10 -3. The greater the 

proximity of the internal points with the tip of the crack, the greater the errors in the values obtained. 

Using the Somigliana identity, already implemented in the program, to find the stress values at the internal 

points, observing the angle of greatest value and, consequently, the angle of propagation of the crack, with 

maximum errors in the order of 10-4 in relation to the analytical results. This method required a substantial 

computational effort and was discarded, as only the use of equation 17 was needed to find the final value. 

The fracture propagation code, where the process is illustrated in Figures 4 and 5, is currently still being 
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developed and implemented. 

5  Conclusions 

In this work, several comparisons with results from the literature were performed to validate the equations 

implemented in several models, in relation to the stress intensity factor, propagation direction and stability of the 

structure. Results related to fracture propagation are still in progress. 

It is worth noting that the use of the crack tip opening displacement presented considerable errors when the 

analyzed points were immediately adjacent and far from the crack tip, which could be caused by geometry errors 

due to mesh refinement and low data accuracy, respectively. 

One of the considerations adopted in this study is that, when crack propagation occurs, the faces would keep 

the same distance from the initial opening, simplifying the iterative process and reducing the computational cost. 
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