
 
 

CILAMCE-PANACM-2021 

Proceedings of the joint XLII Ibero-Latin-American Congress on Computational Methods in Engineering and 

III Pan-American Congress on Computational Mechanics, ABMEC-IACM  

Rio de Janeiro, Brazil, November 9-12, 2021 

 

An improvement to the frequency response in non-homogeneous 

Helmholtz problem using the Double Fictitious Background Media 

Formulation  

Markcilei Lima Dan1, Webe João Mansur2, Carlos Friedrich Loeffler3 

1Department of Mechanical Engineering, Federal Institute of Espírito Santo 

Morro grande, 29300-970, Espírito Santo/Cachoeiro de Itapemirim, Brazil 

dan@ifes.edu.br 
2Department of Civil Engineering, Federal University of Rio de Janeiro, COPPE 

Ilha do Fundão, 21945-970, Rio de Janeiro/Rio de Janeiro, Brazil 

webe@coc.ufrj.br 
3Department of Mechanical Engineering, Federal University of Espírito Santo, PPGEM 

Goiabeiras, 29075-910, Espírito Santo/Vitória, Brazil 

loefflercarlos@gmail.com 

Abstract. This article proposes a new formulation of the Boundary Elements Method to solve the response 

problem in non-homogeneous Helmholtz problems, called Double Fictitious Background Media (DFBMF). The 

DFBMF is based on a simple algebraic procedure, creating a fictitious medium, which consists of adding and 

subtracting the same term in the governing equation, which divides it into two parts: a homogeneous Helmholtz 

equation and a fictitious reactive term. This new governing differential equation is mathematically independent of 

the properties of the chosen fictional background medium. Still, considering the Weighted Residual Principles, the 

associated integral boundary equation is affected by the Green Function argument through the reactive term, which 

accounts for the variation in physical properties. To reduce the numerical error, two integral equations with 

different arguments are generated where the reactive term is considered a common source to the two equations. 

The numerical simulations show a significant increase in the precision of the results with the application of this 

strategy. 
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1  Introduction 

Better BEM results are achieved using formulations in which the fundamental solutions are closely related 

to the original differential operator. However, in important applications such as advective-diffusive problems with 

variable velocity fields or then stationary waves in inhomogeneous media, the most appropriate fundamental 

solutions are given respectively in terms of constant velocities or uniform properties, that is, the strictly adequate 

Green’s functions are not available.  

In order to get around this restriction, dealing with advective-diffusive problems with variable velocity fields, 

Wrobel and DeFigueiredo [1] combined the Dual reciprocity model [2] with the use of a fundamental solution 

corresponding to an advective-diffusive problem for a constant velocity profile. Itagaki [3] imposed a similar 

transformation to handle the variable coefficients of the modified Helmholtz Equation for inhomogeneous means, 

which results in an intelligent way to calculate the remaining domain integral. In this context, Dan and Mansur [4] 

also added and subtracted a term in the Helmholtz equation and considered a Green function correlated to a 

homogeneous fictitious background medium. The additional reactive term then generated is resolved using cells. 

This formulation was called Fictitious Background Media Inverse Formulation (FBMIF). 
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In this article, a new variant of FBMIF is applied to solve Helmholtz's direct problems for non-homogeneous 

media. The proposed approach is called Double Fictitious Background Media Formulation (DFBMF). DFBMF 

proposes two independent integral equations to model Helmholtz problems in inhomogeneous media, generating 

a double system of independent linear equations that promotes a considerable increase in the numerical accuracy 

of the numerical simulations performed. In addition, a proper mathematical interpretation of the integrals with 

appropriate fundamental solutions in combination with the additional fictitious source terms is presented. The 

procedures presented here are generic and can be extended to other mathematical models other than the Helmholtz 

equation, such as advective-diffusive problems with a variable velocity field. 

2  Fictitious background medium for Helmholtz problem 

Despite the Helmholtz equation with variable coefficients finds a wide field of practical applications, still 

persists a demand for BEM formulations capable of solving such problems efficiently [5,6,7]. The main idea 

presented here starts with modifying the original mathematical model by adding and subtracting a term in the 

Helmholtz equation. Thus, considering equation (1), one has: 

 ∇2p + k2(x, y)p=0 (1) 

In Eq. (1) k(x, y) is related to the variable property of the physical medium. For acoustic problems, the 

coefficient k(x, y) corresponds to the wavenumber, that is, the angular frequency divided by variable acoustic 

velocity profile. Thus, adding and subtracting the term k0
2p in the equation (1) and rearranging the terms, the 

following equation is obtained: 

 ∇2p + k0
2p= − [k2(x, y) − k0

2]p= − kvp (2) 

The coefficient k0 corresponds to a wavenumber of a hypothetical homogeneous medium. Equation (2) 

exactly corresponds to the equation (1) and can be interpreted as the response of a homogeneous fictitious 

background medium subjected to the reactive term (−kvp). 

Searching for Green’s function that allows the best approximation for non-homogeneous Helmholtz cases, a 

fundamental solution correlated with respect to the fictitious background medium described in equation (2) is 

proposed. Thus, considering an infinite medium characterized by a constant acoustic velocity profile and subject 

to a point domain source, the Helmholtz fundamental problem is defined as:  

 ∇2Ψ 
∗ + k0

2Ψ 
∗= − δ(ξ; r) (3) 

In Eq. (3) k0 corresponds to the wavenumber of the fictitious medium. As can be extensively found in the 

literature [8], equation (3) is satisfied by the following equation: 

 Ψ∗ =
−i

4
H0

2(k0|r⃗ − r⃗ξ|) (4) 

H0
2 is the Hankel function of the second kind and zero order. Eq. (4) corresponds to the Green’s function 

relative to the fictitious background medium defined in this work. 

Considering Eq. (3) and following common procedure used to establish BEM’s integral sentences, the 

following integral equation can obtained from the equation (4): 

 c(ξ)p(ξ) − ∫ qΨ 
∗dΓ

 

Γ
+ ∫ p q 

∗dΓ
 

Γ
= ∫ kvpΨ 

∗dΩ
 

Ω
 (5) 

In Eq. (5), c(ξ) is a coefficient that depends on the location of the source point ξ [9], and q and q* are the 

normal derivatives of function p and Ψ 
∗ respectively. 

3  Double fictitious background technique 

Equation (5) presents a BEM integral in which it was not possible to use a Green function that exactly fits 

the fundamental problem. Although the use of FBMIF has produced a homogeneous Helmholtz operator on the 

left side, there is an additional reactive term whose numerical effect must be analyzed. The best way to carry out 

this analysis is given by the Weighted Residual Method (WRM) [10]. WRM mathematically explains the reason 
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for the better accuracy of integral formulations that use fundamental solutions related as auxiliary functions. It is 

assumed that when approaching the field of unknowns p in the governing equation, a residual ε results, since the 

exact value of p is not available. As this residual is multiplied by the auxiliary function and integrated into the 

domain, this operation can be interpreted as an internal product. The greater the orthogonality between the 

functional spaces of the residual in relation to the auxiliary function, the lower the value of the inner product and 

the better the accuracy of the approximation used. Thus, the most effective auxiliary functions are the most 

complete and closely related to problems, as is the case with Green's functions. 

In this sense, consider the left side of Eq. (5). Based on WRM, the auxiliary function Ψ 
∗ is a weighting 

function and the following expression for the domain can be written: 

 ∫ [∇2p + k0
2p]Ψ 

∗dΩ
 

 
= ∫ εℎ𝑜𝑚

 

 
Ψ 

∗dΩ = Rℎ𝑜𝑚(p) (6) 

The application of the well-known procedures of the BEM such as integration by parts will only generate the 

left side of Eq. (5) if the portions referring to residues on the boundaries are considered. These parcels were not 

considered for simplicity, since only the examination of residues in the domain is of interest. Therefore, examining 

the right hand side of Eq. (5), one has another residual, given by: 

 ∫ [−kvp]Ψ 
∗dΩ

 

 
= ∫ ε𝑑𝑒𝑠𝑣

 

 
Ψ 

∗dΩ = R𝑑𝑒𝑠𝑣(p) (7) 

In a homogeneous problem, k0 is the uniform property of the medium, and therefore R𝑑𝑒𝑠𝑣  is null. It can be 

stated, based on computational experiments, that the residual related to Rℎ𝑜𝑚 is minimal, given the effectiveness 

of the Green function as a weighting function under homogeneous conditions. However, in heterogeneous cases, 

R𝑑𝑒𝑠𝑣 is not zero. It is not possible to point out any particular quality regarding the minimization of residues given 

by the interaction of Rℎ𝑜𝑚 with R𝑑𝑒𝑠𝑣. As will be shown later, there is an optimal value for k0, producing minimal 

R𝑑𝑒𝑠𝑣 and Rℎ𝑜𝑚 residues, but this value cannot be identified a priori. 

The DFBMF proposes the use of two independent integral sentences to model Helmholtz problems in non-

homogeneous media. Therefore, two independent fictitious wavenumbers k01 and k02 are considered resulting in 

the following pair of integral equations: 

 

c(ξ)p(ξ) − ∫ qΨ 
∗dΓ

 

Γ
+ ∫ p q 

∗dΓ
 

Γ
= ∫ [k2(x, y) − k01

2 ]pΨ 
∗dΩ

 

Ω
= ∫ kv1pΨ 

∗dΩ
 

Ω
 

c(ξ)p(ξ) − ∫ qΨ̅∗dΓ
 

Γ
+ ∫ p q̅ 

∗dΓ
 

Γ
= ∫ [k2(x, y) − k02

2 ]pΨ 
∗dΩ

 

Ω
= ∫ kv2pΨ̅∗dΩ

 

Ω

 (8) 

The main idea here is to treat any value of pressure p occurring inside de domain Ω as a new independent 

unknown  p̂. Hence, considering this new variable p̂, integral equations (8) are rewritten as: 

 c(ξ)p(ξ) − ∫ qΨ 
∗dΓ

 

Γ
+ ∫ p q 

∗dΓ
 

Γ
= ∫ kv1p̂Ψ 

∗dΩ
 

Ω
 (9) 

 c(ξ)p(ξ) − ∫ qΨ̅∗dΓ
 

Γ
+ ∫ p q̅ 

∗dΓ
 

Γ
= ∫ kv2p̂Ψ̅∗dΩ

 

Ω
 (10) 

Hence, equations (9) and (10) form a set of linearly independent integral equations that can be used to 

simulate physical problems modeled by the Helmholtz equation for both homogeneous and inhomogeneous media. 

The reactive terms present on the right side of equations (8) are now treated as fictitious sources, so that their 

respective weighted residual sentences are given by: 

 

Rℎ𝑜𝑚
1 (p) − R𝑑𝑒𝑠𝑣

1 (p̂) = 0
 

Rℎ𝑜𝑚
2 (p) − R𝑑𝑒𝑠𝑣

2 (p̂) = 0
 (11) 

Written in terms of the fictitious pressure p̂ the two residual equations involve different properties, but 

together the common value of the unknown pressure p can be minimized. However, as one more unknown has 

been introduced, it is necessary to work with two equations. The values of k01 and k02 can be arbitrary, but there 

are more suitable combinations that will be discussed opportunely. The consistency of this procedure will be 

confirmed with the numerical solution of some examples. 

4  Matrix model 

The matrix formulation for the DFBMF is obtained from the equations (9) and (10). The Eq. (9) is taken 
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initially. The collocation method is applied at the boundary and the domain functional nodes with the domain Ω 

discretized using respectively  𝐍 and  𝐌 functional nodes. However, 𝐌 independent equations should be 

introduced in order to make it a consistent system. A set of 𝐌 extra independent equations can be obtained from 

the equation (10) by executing the collocation method in the domain functional nodes, resulting in the following 

linear system: 

 [

 𝐇𝟎𝟏 −𝐆𝟎𝟏 𝟎

�̅�𝟎𝟏 −𝐆𝟎𝟏 �̅�

�̅�𝟎𝟐 −𝐆𝟎𝟐 �̅�

] [

𝐩𝐂𝐨𝐧𝐭

𝐪𝐂𝐨𝐧𝐭

𝐩𝐈𝐧𝐭

] = [

𝐅𝐅𝟎𝟏

𝐅𝐅̅̅̅̅
𝟎𝟏

𝐅𝐅̅̅̅̅
𝟎𝟐

] 𝐩 (12) 

The sub matrices 𝐇𝟎𝟏 and 𝐆𝟎𝟏 comes from the boundary integrals in the equation (13), the matrix   𝐅𝐅𝟎𝟏 from 

the domain integral and �̅� is an identity matrix corresponding to the coefficient c(ξ) from the internal colocation 

points. The notation ̅  is used to distinguish matrices obtained from domain internal colocations points to the 

ones obtained from boundary colocations points. 

5  Numerical example 

The chosen example corresponds to a simple case of a plane stationary wave on the x direction on a 

homogeneous and limited space region Ω. The physical domain and its acoustic properties are shown in the Fig 1. 

Null Neumann conditions are applied on horizontal lines. 

 

Figure 1. Acoustic domain and physical properties 

Considering that no reflections occur in the faces 1 and 3, the analytical solution for this Helmholtz problem 

can be written as: 

 p = ρc e−ikx (13) 

Results corresponding to the FBMF were obtained assigning the followings values to k0: 0.4, 0.6, 0.8, 1.0, 

1.2 and 1.4 m−1. On the other hand, for the DFBMF, it is necessary adjust two values of fictitious wavenumber. 

Thus, the value of k02 was fixed arbitrarily as k02 = 0.3833 m−1  and the following values were assigned for the 

fictitious wavenumber k01: 0.5, 0.7, 0.9, 1.1, 1.3 and 1.5 m−1. 

The use of the fictitious medium strategy in this homogeneous case is strategic, since it is possible to assign 

to the fictitious wavenumbers values different from the value pertinent to the proposed problem and verify its 

effects. Despite the correction imposed by the fictitious reactive term, there is a significant change in the results, 

as can be seen in Figure (2). 

In the differential equation, the term concerning the pressure field that obeys equation (6) is independent of 

the fictitious background medium chosen and it has to be a null global effect. However, when an integral sentence 

is formulated, the results are affected by the choice of an auxiliary function. As provided by the Weighted Residual 

Method, since the Green’s function is not the strictly appropriate fundamental solution, the minimum residuals is 

affected by the non-null reactive term introduced by the fictitious technique. It also means that the suitable 

argument of the correlate Green’s function is determinant to the accuracy. 
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Figure 2. Mean error for the pressure. FBMF results for different values of fictitious wavenumbers k0 

The results shown in figure 3 are obtained using DFBMF. There is a strong reduction in errors for all ranges 

of values assigned to the fictitious wavenumbers k01, confirming the consistency of the proposed strategy. On the 

other hand, analyzing figures (2) and (3) it is also possible to conclude that there is an optimal value for the 

fictitious wave number that leads to maximum accuracy. It is an expected result, since the FBMF is reduced to the 

original formulation of the boundary element for the Helmholtz equation when k0 = kMedium so that the domain 

integral is null.  

Although the DFBMF is less sensitive to the variations imposed on the fictitious wavenumber it was also 

observed that its maximum accuracy occurs for a value slightly greater than 1. This small deviation is certainly 

produced by the use of two independent equations. However, the improvement given by DFBMF compensates for 

this effect. 

In this homogeneous example, it is clear that DFBMF led to more accurate results than FBMF especially 

when the fictitious wavenumber values k0 are further away from the prescribed or ideal. This superior performance 

is credited to the introduction of a new independent equation. 

Considering ideal values of fictitious wavenumber k0 and k01, the figures 4 and 5 exhibit the nodal values 

of error for the module of pressure inside the domain obtained with the FBMF for k0 = 1 m−1 and the DFBMF 

for k01 =  1.07 m−1. 

 

Figure 3. Mean error to the pressure. DFBMF for different values of wavenumbers k01 and fixed k02 
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Figure 4. Nodal error of pressure (module) inside the domain Ω using the FBMF for k0 = kMedium = 1 m−1 

 

Figure 5. Nodal error in the numerical evaluation of pressure (module) inside the domain Ω using the DFBMF 

for k01 = 1.07 m−1 and k02 = 0.3833 m−1 

In this homogeneous example, it is clear that the DFBMF led to more accurate results than the FBMF, mainly 

when values of fictitious wavenumbers are longer different from the prescribed or ideal ones are used. This 

superior performance is credited to the introduction of a new independent equation. 

6  Conclusions 

This article proposes a new BEM formulation to solve the non-homogeneous Helmholtz problem. DFBMF 

is based on the simple algebraic procedure of the Fictitious Background Media technique, but uses two integral 

equations that produces an improvement in accuracy. It occurs because the non-zero fictitious reactive term 

interacts negatively, as can be confirmed by the numerical results. This first important conclusion is that the 

Green's function used with average wavenumber as uniform constitutive property and Dual Reciprocity to solve 

the complementary term cannot be the best choice, since an optimal condition needs to be sought. 

The second conclusion, however, is about the capacity of the proposed DFBMF to significantly reduce the 

numerical perturbations produced by the fictitious reactive term. Modeling the problem in terms of two 

independent integral equations, each related to a Green function for different values of the dummy background 

medium, it is possible to use empirical control parameters that improve the quality of the results. The theoretical 

substance for the use of two integral equations was confirmed by the numerical results obtained in the example 

presented here. 

The convergence tests performed here can be replaced by a more adequate mathematical analysis. The ideal 
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values of the fictitious wavenumbers are reached when the error curves reach minimum points. Since this minimum 

of the error curve corresponds to the point of the null derivative, this aspect can be used to establish a stopping 

criterion for an iterative algorithm. This algorithm should converge to optimal values for the fictitious 

wavenumbers when the minimum point on the error curve is reached. The derivative of one of the two integral 

equations of DFBMF can be used for this purpose. However, this is a subject to be explored in future works. 
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