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Abstract. Composite materials are attractive candidates for structural applications that require high specific-
strength and high specific-stiffness. Laminated composite materials are extensively used in aeronautical, aerospace,
and lately wind energy industries, where weight-sensitive structures are abundant. The structural modeling of
laminates commonly employs the Classical Lamination Theory (CLT). It is an extension of the homogeneous plate
theory introducing the elastic coupling effects present in laminates. In the CLT, the laminate stacking sequence
and material properties of each layer generate a homogenized section. Also, these structures are often slender and
may present large displacements and finite rotations, so that the adoption of a geometrically nonlinear shell model
is appropriate. This work presents the extension of a fully geometrically nonlinear triangular shell finite element
to account for laminated composite materials. The constitutive relations are derived from a quadratic potential
based on the CLT, considering small strains. The method was implemented in the Giraffe solver, accounting for
transverse shear and an additional drilling stiffness parameter. Calibration of the drilling stiffness was performed by
comparing static results from ANSYS® software, as a reference. Modal analysis was also addressed, for the same
composite proposals. Numerical results showed good agreement between Giraffe and ANSYS® implementations.

Keywords: composite shells, CLT, nonlinear shell formulation

1 Introduction

Fiber-reinforced composite (FRC) materials take advantage of both stiff, resistant fibers and ductile, resilient
matrix to exhibit the best structural qualities of their constituents. Composite laminates are a bonded stack of
FRC layers with multiple orientations. Lamination enables the tailoring of the material to prescribed structural
requirements with little waste of material capability, as described by Jones [1]. Therefore, composite laminates
are a cost-effective alternative for structural applications that are weight-sensitive, such as aeronautical, aerospace,
and wind energy.

Optimal tailoring of the material to meet the structural requirements depends on choosing a reliable model
concerning its constitutive relations. As lightweight is generally the main design guideline in these structures,
the model must be able to cope with structural slenderness, which commonly is accompanied by geometric non-
linearities, such as large deformations and finite rotations. The Classical Lamination Theory (CLT) qualifies for
describing the stress-strain relations and has been widely used in laminate structural modeling. It extends the
homogeneous plate theory based on the orthotropic layer assumption to enable the determination of the laminate
stress state. In the CLT, the laminate stacking sequence and the material properties of each layer generate a plate
section. Assuming a through-thickness continuous displacement field, the intrinsically compound nature of the
laminate leads to a discontinuous stress field in the plate model and the bonded interface, consequently, to elastic
coupling effects.

As previously mentioned, the structural slenderness commonly leads to geometric nonlinear scenarios, re-
quiring a nonlinear framework. Therefore, a fully nonlinear geometrically exact shell model with a standard
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Reissner-Mindlin kinematical assumption is eligible, as proposed by Simo and Fox [2], Campello et al. [3], and
others. On the other hand, the CLT constitutive relations can be derived, under small strains, from a quadratic
potential.

This work presents the extension of the finite element shell formulation of Campello et al. [3], and Ota
et al. [4] to include laminated composite materials in the finite element solver Giraffe implementation [5]. The
implementation is verified by a comparative assessment of numerical results with the ANSYS® solver.

2 Shell model

2.1 Kinematics

The shell model refers to the updated-Lagrangian description used by Ota et al. [4] and based on Campello
et al. [3],[6]. In the updated model, three configurations are described by local orthonormal frames, as in Fig. 1:
{er1, er2, er3} as the assumed-plane initial reference configuration Ωr, {ei1, ei2, ei3} the configuration at instant “i”,
Ωi, and {ei+1

1 , ei+1
2 , ei+1

3 } the configuration at instant “i+ 1”, Ωi+1.

Figure 1. Updated shell model: instants and configurations

The quantities are back-rotated to the reference configuration to avoid non-objectivity due to rigid body
motion. The deformation, summarized at the instant “i+1” by the tensorQi+1, can be described in an incremental
manner. The rotation tensor Q∆ updates the position vector fields from the instant“i” to “i + 1”, namely xi to
xi+1, andQ describes the accumulated transformation until the instant “i”, relating xr and xi, as shown in eq. (1).

xi+1 = Q∆Qxr = Qi+1xr. (1)

In the reference configuration, the position of any material point in the shell domain can be completely
described by the mid-surface position zr and the shell director ar = ζer3, so that ζ ∈ H = [−hb, ht] is the depth
coordinate with respect to the reference mid-surface and the shell thickness h = hb + ht. The application of
eq. (1) to the shell director not only implies its inextensibility, but also ensures the Reissner-Mindlin kinematical
constraint, since fibers initially aligned with the shell director remain aligned with it at any further configuration,
as ai+1 = ζei+1

3 .
The shell back-rotated cross-sectional strain vectors at the instant “i+ 1” can be defined as follows:

ηi+1r

α = Qi+1T zi+1
,α − erα, κi+1r

α = axial
(
Qi+1
,α Qi+1T

)
, (2)

where ηi+1r

α is the translational strain vector, and κi+1r

α , the specific rotation vector.

Remark 1: Notation. In the text, the greek indices range from 1 to 2, referring to in-plane quantities. Besides,
summation convention over repeated indices is adopted.
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2.2 Statics

As an updated, pure-displacement based formulation, the internal and external loads power are related to
the incremental displacement field d∆. Therefore, the stress power at the instant “i + 1”, computed in the plane
reference shell domain Ωr, may be written as:

P i+1
int =

∫
Ωr
σi+1r

α · ε̇i+1r

α dΩr, (3)

where σi+1r

α and ε̇i+1r

α respectively summarize the cross-sectional stress and strain-rate vectors:

σi+1r

α =

ni+1r

α

mi+1r

α

 , ε̇i+1r

α =

η̇i+1r

α

κ̇i+1r

α

 = Ψαḋ
∆
, (4)

in which ni+1r

α and mi+1r

α are the back-rotated cross-sectional forces and moments per unit length. The operator
Ψα is fully described in [3]. These forces and moments are obtained from the standard definition, as shown in
eq. (5):

ni+1r

α =

∫
H

τ i+1r

α dζ, mi+1r

α =

∫
H

ai+1r × τ i+1r

α dζ, d∆ =

u∆

α∆

 , (5)

where τ i+1r

α are the back-rotated stress vectors, and u∆ and α∆ the translational and rotational incremental
displacement fields.

The shell external power at instant “i+ 1” is given by:

P i+1
ext =

∫
Ωr
q̄ · ḋ

∆
dΩr, (6)

with q̄ as the generalized external forces vector per unit area of the mid-surface in the reference configuration.
The weak form is obtained from the virtual work theorem, and its linearization leads to the tangent bilinear

form in the shell domain Ωr:

δ∗ (δW ) =

∫
Ωr

δdTΨT
αD̄αβΨβδ

∗d dΩr +

∫
Ωr

δdT∆T
αGα∆αδ

∗d dΩr −
∫
Ωr

δTLδ∗d dΩr, (7)

where the symbol δ stands for virtual quantities, and δ∗, for the linearized quantitities with respect to d∆. The
matrices D̄ and G are the generalized constitutive and geometric tangent stiffnesses, and L is the external load
geometric tangent stiffness (zero, when no follower loads are considered).

2.3 CLT constitutive relations

The CLT constitutive relations derive from the assumption of a linear elastic quadratic potential:

Ψ(εi+1r ) =
1

2
εi+1r · D̄εi+1r =

1

2
εi+1r

α · D̄αβε
i+1r

β , (8)

where the cross-sectional generalized stresses and strains are related by the generalized constitutive tangent stiff-
ness matrix, D̄, given by its sub-matrices D̄αβ as follows:
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D̄αβ =
∂σi+1r

α

∂εi+1r

β

=

 ∂ni+1r

α

∂ηi+1r

β

∂ni+1r

α

∂κi+1r

β

∂mi+1r

α

∂ηi+1r

β

∂mi+1r

α

∂κi+1r

β

 , (9)

so that the D̄ matrix corresponds to the CLT well-knownABD matrix.

nr
mr

 =

A B

B D

ηr
κr

 , (10)

where the sub-matricesA,B, andD are extensional, coupling and flexural stiffnessess, as given:

A =
∑
k

(hk − hk−1)Q̄pk
, (11)

B =
∑
k

(h2
k − h2

k−1)

2
Q̄pk

, (12)

D =
∑
k

(h3
k − h3

k−1)

3
Q̄pk

, (13)

in which Q̄pk
and Q̄tk

are the material tangent moduli at the kth layer, where the subscript p refers to the membrane
quantities derived from the plane stress assumption, and t, transverse quantities. Both moduli are defined in the
laminate global coordinate system so that their contributions can be summed up to a homogenized section.

Remark 2: Transverse shear and drilling DOF. The CLT was originally developed on a Kirchhoff plate theory
context so that we must adapt the relations above to account for transverse shear in a Reissner-Mindlin fashion.
Also, the extension to a shell model requires an additional drilling degree of freedom, which must belong to
the constitutive relations. The additional relations adopt the matrices from eq. (14) and eq. (15), retrieved from
Chróścielewski et al. [7].

S = αs
∑
k

(hk − hk−1)Q̄tk
, (14)

G = αt
∑
k

(h3
k − h3

k−1)

3
Q̄tk

, (15)

in which S represents the transverse shear stiffnesses, and G, the drilling couples. The shear correction factor
αs = 5

6 is applied to the through-thickness uniform shear strain (and stresses), and αt is a numeric factor that will
be calibrated in next section.

Remark 3: Modal analysis. The last numerical example of Section (3) is a modal analysis. For a correct de-
scription of the model, one must account for the mass distribution, as shown in eq. (16). The mass matrix itself can
be obtained by applying this distribution in the finite element interpolation procedure described in [3].

M =
∑
k

∫
Ωr

∫ hk+1

hk−1

ρk dζdΩr, (16)

where ρk is the specific mass of the composite material at each layer.
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3 Results

The following numerical examples assess the formulation herein presented by comparing the results with
the commercial finite element code ANSYS®, as a reference. The examples were adapted from Barbero [8],
comprising different laminate stacking sequences (LSS), from unidirectional (UD), to symmetric, and asymmetric
laminates. All plates were laminated with carbon/epoxy AS4D/9310, with the following material properties:

Table 1. Material properties of UD carbon/epoxy AS4D/9310

Property Value

E1 133.86 GPa
E2 = E3 7.706 GPa
G12 = G13 4.306 GPa

G23 2.76 GPa
ν12 = ν13 0.301

ν12 0.396
ρ 1.52 g/cm³

3.1 UD laminate: simply supported, transversely loaded rectangular plate

A simply supported rectangular plate, ax = 4000mm, ay = 2000mm, thickness t = 10mm is transversely
loaded by a uniform pressure q0 = 0.12 × 10−3 MPa, as represented in Fig. 2. The laminate is unidirectional,
with the fibers oriented in the x direction. Vertical displacements obtained for the center point of the plate were
compared for geometrically nonlinear simulations in both software. Figure 3 overlays almost coincident curves,
showing good agreement even for a coarse mesh.

Figure 2. Problem definition for example 3.1

Figure 3. Center point deflection results for ANSYS® and Giraffe for two refinement standards

Remark 4: Drilling calibration. The simulation results for this example were almost identical for the adopted αt
numerical factor range of calibration so that the results for αt = 1 were considered.
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3.2 [0/90]n configuration laminate: simply supported, axially loaded square plate

Figure 4 shows a simply supported square plate, ax = ay = 2000 mm, and thickness t = 10 mm loaded
in compression with an edge load Nx = −1 N/mm. The laminate is a crossply [0/90]n and Fig. 5 depicts the
plate center point vertical displacement for n = 1, 10, 20. As the plate is axially loaded, the deflection at its

Figure 4. Problem definition for example 3.2

Figure 5. Center point deflection results for ANSYS® and Giraffe (results for 485 nodes)

center is a coupling displacement. It is clear from Fig. 3 that its value reduces drastically with the increase of
homogeneity in the laminate stacking sequence. Also, the results were computed for αt = {1, 103, 106}, and no
relevant differences were observed so that αt = 1 was fixed.

3.3 Prestressed modal analysis

This last example was performed to assess the model’s robustness in a prestressed modal analysis. The
laminate adopted was a [0/90], loaded in compression as in Example 3.2. Figure 6 shows the natural frequencies
to the first twelve modes obtained from both software frameworks, and Fig. 7 the first three mode shapes.

Figure 6. First twelve natural frequencies for three simulations with increasing refinement
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Figure 7. First (a), second (b), and third (c) mode shapes for Giraffe (top) and ANSYS® (bottom)

Remark 5: Symmetry fixture. All simulations in this work were carried out with a 1
4 of plate model, considering

the symmetry in the xz and yz planes, including the modal analyses. Although this modeling strategy suits well
for numerical benchmark purposes, one must avoid this assumption in real structural modeling, for the symmetry
boundary conditions may disable capturing skew modes.

4 Conclusions

This work presented the extension of a geometrically exact shell model to laminated composite materials,
based on the CLT. A comparative assessment of the numerical results was conducted, demonstrating very good
agreement between Giraffe and ANSYS® implementations. The numeric factor related to the drilling degree of
freedom showed little influence in the results, so that any value in the range ]0, 106] can be adopted.
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