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Abstract. In composite materials the combination of different constituents promotes heterogeneity and specific
properties. Therefore, the constitutive behavior of a composite can be complex. In this context, the present work
explores a computational homogenization procedure to predict the overall or macroscopic effective elastic proper-
ties accounting for characteristics of the constituents at microscale. The microstructure of the material is modeled
using the concept of Representative Volume Element (RVE). Both uniform strain or periodic boundary condition
are applied on the RVE to compare the results. The effective elastic properties are then obtained from homoge-
nization of the microscopic fields computed with three-dimensional numerical simulations by finite elements. The
macroscopic constitutive properties obtained numerically are then compared to available results. The results show
a strong influence of the boundary condition on the effective elastic properties. On the other hand, the inclusion
morphology has no significant influence on the results. Furthermore, the procedure hereby described is an effective
tool to the more realistic modeling of the macroscopic constitutive behavior of composites materials.

Keywords: Composite materials, Computational homogenization, Overall effective elastic properties, Uniform
strain boundary condition, Periodic boundary condition.

1 Introduction

Composite materials are widely used in many industrial segments, such as Civil Engineering, Aerospace
Engineering and Mechanical Engineering. An advantage is the combination of particular material properties to
create an improved material with improved specific properties. However, the constitutive behavior of a composite
material can be highly complex due to the heterogeneity observed in the lower scales. Therefore, further studies
are justified to model with more accuracy the constitutive behavior of this class of materials.

One of the fields of interest in the study of composite materials is the prediction of the overall effective
elastic properties. Some precursor works in this sense were Voigt [1] (providing an upper bound) and Reuss [2]
(providing a lower bound). The model of Voigt [1] assumes that the deformation field is uniform in the composite.
On the other hand, the model of Reuss [2] assumes that the stress field is uniform in the composite. Despite
these analytical models are based on simplified assumptions, they provide rigorous reference limits in the study of
effective elastic properties. The analytical expressions derived from variational principles by Hashin and Shtrikman
[3] giving more precise bounds are also well-known. Another classic work worth to be mentioned is Hill [4], where
important concepts about representative volume and relations between averages are discussed.

In the last decades, many works have been developed considering approaches based on computational ho-
mogenization using finite elements to study the effective elastic properties of composite materials. Sun and Vaidya
[5] computed the effective elastic properties of periodic composites considering the concept of Representative Vol-
ume Element (RVE). Michel et al. [6] studied the effective properties of several specific problems of composites
with periodic microstructure composed of linear or non-linear constituents. Xia et al. [7] presented an explicit
unified form of boundary conditions for a periodic RVE. Kari et al. [8] assessed the effective material properties
of composites reinforced by randomly distributed spherical particles. Medeiros et al. [9] evaluated the effective
properties for smart composite materials with piezoelectric fibers embedded in a non-piezoelectric matrix (epoxy
resin). More recently, Omairey et al. [10] developed an ABAQUS R© plugin to estimate the homogenized elastic
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properties for a periodic RVE of a composite material.
In this context, the present work explores a computational homogenization procedure to obtain the overall

effective elastic properties of composite materials. The homogenization procedure is implemented in the ANSYS R©

Mechanical, Release 18.0. The study assesses the influence of the inclusion morphology on the effective elastic
properties of composites considering: (1) Cubic cell with a unidirectional inclusion of circular cross section; (2)
Cubic cell with a unidirectional inclusion of square cross section. The results are compared considering two
boundary conditions: (i) Uniform strain boundary condition; (ii) Periodic boundary condition.

2 Preliminary concepts: homogenization and effective properties

The average-based homogenization theory is interesting for the study of the overall homogenized constitu-
tive response of composite materials. In this case, the macroscopic stress and strain fields associated with the
macroscale of the continuum (Σ andE) are obtained by the volume averaging of the respective microscopic fields
or RVE fields (σ and ε) [11]:

Σ =
1

V

∫
V

σdV =< σ >; E =
1

V

∫
V

εdV =< ε > (1)

where < · > indicates volume averaging; V represents the total initial volume of the RVE (for small strains).
The Hill-Mandel principle (see Bishop and Hill [11] and Mandel [12]) associates the macroscale and mi-

croscale domains. According to this principle, an equivalence of energy is assumed on both scales:

Σ : E =
1

V

∫
V

σ : εdV =< σ : ε > (2)

The stress and strain tensors in the macroscale can be correlated by an effective elastic stiffness tensor (C)
or an effective elastic flexibility tensor (D = C−1), both being a fourth-order tensor presenting major and minor
symmetries:

Σ = C : E; E = D : Σ (3)

Since Σ andE are averages of σ and ε over the volume, a Boundary Value Problem (BVP) must be solved to
evaluate the microscopic fields of the RVE. Two classes of boundary conditions often appointed in the literature are:
(i) Uniform strain boundary condition (USBC); and (ii) Periodic boundary condition (PBC). The USBC assumes
that the displacements imposed on the outer contour of the RVE are compatible with a macroscopic homogeneous
strain state (E∗):

u = E∗ · x ∀ x ∈ ∂V (4)

where E =< ε >= E∗ and x is the position vector. An illustrative scheme of the USBC is shown in Figure 1(a).
In turn, the PBC comprises a parcel associated with the macroscopic homogeneous strain (E∗) and a parcel

called periodic fluctuation (ũ):

u = E∗ · x+ ũ ∀ x ∈ ∂V (5)

where E =< ε >= E∗.
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Figure 1. Illustration of two classes of boundary conditions.

However, the ũ variable is not known initially in the BVP for the PBC. An alternative for the implementation
of PBC is to correlate the displacement of the outer contour nodes by restrictions in the BVP (e.g. by means of
Lagrange multipliers or penalty function method). In this case, the outer contour of the RVE can be divided into a
positive part (Γ+) and a negative part (Γ−). Thus, each point x+ on Γ+ has a corresponding point x− on Γ−. An
illustrative scheme of the PBC is shown in Figure 1(b). For example, considering the points x+ and x−, we have
the following restriction in the BVP for PBC:

u+ − u− = E ·
(
x+ − x−) (6)

where ũ+ − ũ− = 0.
The same conceptual approach can be extended to a three-dimensional (3D) RVE for the implementation of

the periodic condition. An alternative is to divide the outer contour of the RVE considering groups of Sface (faces),
Sedge (edges) and Scorner (corners) (see Figure 2).
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Figure 2. Groups Sface (faces), Sedge (edges) and Scorner (corners) on the outer contour of the RVE.

After creating the RVE finite element mesh, the nodes for each group (Sface, Sedge and Scorner) can be correlated
by eq. (6) considering the pairs (see more details in Santos [13]):

Sface =
{

(BCGF, ADHE), (ABCD, EFGH), (ABFE, DCGH)
}

Sedge =
{

(BF, CG), (BF, AE), (AE, DH), (AB, CD), (AB, EF), (EF, GH),

(BC, AD), (BC, FG), (FG, EH), (AD, EH), (CD, GH), (CG, DH)
}

Scorner =
{

(B, C), (C, G), (G, F), (A, G), (D, H), (H, E), (E, F), (B, A), (A, E), (B, F), (C, D), (G, H)
}

2.1 Effective elastic properties of composites by computational homogenization

In this section, the computational homogenization procedure to study the effective elastic properties of com-
posites is presented. The study is carried out for two periodic RVE morphologies (see Fig. 3): (i) RVE1 - Cubic
cell with a unidirectional inclusion of circular cross section; (ii) RVE2 - Cubic cell with a unidirectional inclusion
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of square cross section. The constitutive behavior for the matrix and for inclusion is linear elastic. The modulus
of elasticity (Y ), the Poisson’s ratio (ν) and the volume fraction (f ) of each constituent are adopted following Xia
et al. [7], Sun and Vaidya [5]. The aluminum matrix has Ym = 68.3 GPa, νm = 0.3 and fm = 0.53. The boron
inclusion has Yi = 379.3 GPa, νi = 0.1 and fi = 0.47.

The homogenized constitutive behavior of each RVE is obtained for the USBC and PBC. Both kinematic
boundary conditions are written as a function of a macroscopic strain imposed on the external contour of the
RVE (E∗). In these cases, the homogenized deformation is equal to the imposed macroscopic deformation (i.e.,
E = E∗). The computationally homogenized stress is obtained from the microscopic fields calculated by finite
elements using the ANSYS R© Mechanical, Release 18.0. The structured meshes of the RVEs are shown in Fig. 4.
The quadratic hexahedral solid element with 20 nodes are used in numerical analysis. The sequence of meshes
adpoted are formed by 19992 elements, 85513 nodes and 256539 degrees of freedom. The expression to obtain
the computationally homogenized stress (Σ) is given by:

Σ =
1

V

Nelem∑
i=1

σiVi, (7)

where Nelem is the total number of finite elements; σi is the average stress in the element i computed at their
integration points; Vi is the volume of the element i; and V is the total volume of the RVE.

RVE1 

  

RVE2 

  

Composite with unidirectional 

inclusions of square cross section 

Composite with unidirectional 

inclusions of circular cross section 

Figure 3. RVE morphologies of the study from composites with periodic distribution.
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Figure 4. Meshes with 19992 elements, 85513 nodes and 256539 degrees of freedom.

The macroscopic constitutive behavior is assumed to be orthotropic and linearly elastic. The principal orien-
tation of orthotropy is assumed to coincide with the cartesian reference directions. In this case, the constitutive law
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in an equivalent matrix notation derived from the Voigt notation, in terms of C and D respectively, are given by:

Σ11

Σ22

Σ33

Σ12

Σ13

Σ23


=



C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66





E11

E22

E33

2E12

2E13

2E23


(8a)



E11

E22

E33

2E12

2E13

2E23



=



1

Y1
−ν21
Y2

−ν31
Y3

0 0 0

−ν12
Y1

1

Y2
−ν32
Y3

0 0 0

−ν13
Y1

−ν23
Y2

1

Y3
0 0 0

0 0 0
1

G12
0 0

0 0 0 0
1

G13
0

0 0 0 0 0
1

G23





Σ11

Σ22

Σ33

Σ12

Σ13

Σ23



(8b)

where ν12Y2 = ν21Y1; ν13Y3 = ν31Y1; ν23Y3 = ν32Y2.
The components Cij of eq. (8a) were obtained from different loading situations considering E∗. In the

context of the studied kinematic boundary conditions, six numerical simulations were performed for each RVE:
(1) E11 = 1.0; (2) E22 = 1.0; (3) E33 = 1.0; (4) 2E12 = 1.0; (5) 2E13 = 1.0; and (6) 2E23 = 1.0. Therefore, the
constitutive stiffness tensor (C) was obtained by eq. (8a) considering the homogenized stress and strain tensors (Σ
andE). The flexibility tensor (D) was obtained by performing C−1. Finally, the elastic constants were determined
by eq. (8b).

2.2 Results of effective elastic properties

The results for the effective elastic constants for the RVE1 considering the PBC are shown in the Table 1,
including the comparison with the works of Xia et al. [7] and Sun and Vaidya [5]. The constants Y2 and G31 are
omitted for the sake of conciseness, since, due to the symmetry plane 2− 3 of the RVEs, they are equal to Y3 and
G12, respectively. The answers match very well with Xia et al. [7] results for all constants. The answers are also
close to Sun and Vaidya [5] results for almost all constants. In this case, the most significant differences are those
for the constants G23 and ν12. Therefore, in general, the results of the homogenization procedure are close to the
reference works.

Table 1. Effective elastic constants for the RVE1 considering the PBC.

Elastic parameter
Present work Xia et al. [7] Sun and Vaidya [5] Differences in module

(1) (2) (3) (1) to (2) (1) to (3)

Y1 (GPa) 144.00 143 144 0.70 % 0.00 %

Y3 (GPa) 215.34 214 215 0.63 % 0.16 %

G12 (GPa) 45.82 45.7 45.9 0.26 % 0.18 %

G23 (GPa) 54.38 54.2 57.2 0.34 % 4.92 %

ν12 0.2550 0.255 0.29 0.02 % 12.08 %

ν32 0.1946 0.195 0.19 0.23 % 2.40 %

Table 2 shows the results of the effective elastic constants for each RVE morphology (RVE1 and RVE2)
considering both studied boundary conditions (USBC and PBC). In addition to tables, visualization of microscopic
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fields is also useful to understand macroscopic results. In this context, Figures 5 and 6 show the distributions of
the microscopic shear stress (σ12) for the RVEs submitted to the USBC and PBC, respectively, considering the
loading situation with 2E12 = 1.0.

The influence of the boundary condition in the results of the effective elastic constants are similar for both
RVEs morphologies. For each of these configurations, there are strong differences between the results from USBC
and PBC. The properties of G12 and G23 obtained with PBC are significantly lower compared to USBC, which
indicates that the boundary condition plays an important role in the shear modulus. This can be explained by
the difference in the distribution of microscopic stresses for each boundary condition (see Figs.5 and 6). The
sensitivity of the response of the constant Y1 is also observed, where the PBC indicates a response with a lower
value. Moreover, there are differences in the ν12 and ν32 constants, where the responses with USBC are lower
compared to PBC. In this case, the differences are more significant for ν12 parameter compared to ν32 parameter.

On the other hand, the influence of the inclusion morphology is small in the results of the effective elastic
constants. The most significant difference occurs for the elastic constant ν12. It is also valid to mention the smaller,
but not negligible, divergences for the constants Y1 and G12.

Table 2. Comparison of the effective elastic constants between RVE1 and RVE2 for the USBC and the PBC.

RVE1 RVE2

Elastic parameter
USBC PBC USBC PBC Differences in module

(1) (2) (3) (4) (2) to (1) (4) to (3) (3) to (1) (4) to (2)

Y1 (GPa) 158.21 144.00 161.08 147.86 8.98 % 8.21 % 1.81 % 2.68 %

Y3 (GPa) 216.09 215.34 216.08 215.37 0.35 % 0.33 % 0.00 % 0.01 %

G12 (GPa) 61.71 45.82 60.43 45.30 25.76 % 25.03 % 2.08 % 1.12 %

G23 (GPa) 72.18 54.38 72.39 54.85 24.65 % 24.23 % 0.30 % 0.85 %

ν12 0.2288 0.2550 0.2145 0.2369 11.43 % 10.41 % 6.21 % 7.08 %

ν32 0.1846 0.1946 0.1846 0.1941 5.37 % 5.13 % 0.00 % 0.23 %

3D view (three-dimensional) 
𝒙𝒚 plane view 

3D view (three-dimensional) 
𝒙𝒚 plane view 

(a) RVE1 

MPa MPa 

(b) RVE2 

Figure 5. Microscopic shear stress distributions (σ12) for USBC.

3 Conclusions

The present work carried out a study on the overall effective properties of composites using an approach
based on computational homogenization. Two morphologies of RVE were assessed, considering both USBC
and PBC. The restriction imposed on the external contour of the RVE clearly interferes in the distribution of
its microscopic fields. Consequently, in general, the boundary condition has a significant influence in the results of
the effective elastic constants, mainly for the constants associated with the shear modulus. In contrast, the change
in the inclusion morphology has a clearer influence only on the Poisson’s ratio for the plane associated with the
fiber cross section. Therefore, in general, the inclusion morphologies considered in the present work do not play
an important role in the results of the effective elastic constants. Moreover, the computational homogenization
procedure implemented in the ANSYS R© software is an interesting tool to study other problems with periodic
materials.
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Figure 6. Microscopic shear stress distributions (σ12) for PBC.
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