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Abstract. The continuous damage mechanics allows the construction of constitutive models that represent well the
behavior of concrete structures. In this work, a computational code is developed, using the positional approach of
the Finite Element Method (FEM), which allows to represent the concrete degradation using two different damage
models. In the first, the degradation is distributed in the elements that discretize the concrete. In the second, the
damage model is applied to interface elements and makes it possible to represent discrete cracks in the structure.
The objective is to compare the performance of these models by applying them to the same structure to verify the
proximity of the force-displacement curves and cracking patterns. Where do we seek to define the best for each
type of use. The concrete is represented in mesoscale, where the finite element meshes that represent the coarse
aggregates and the mortar are generated independently and are superimposed to form the composite material. The
damage models were applied to a reinforced concrete beam and it was found that the model applied to interface
elements represents the cracks better, but the computational cost is higher.
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1 Introduction

Concrete structures after a certain load intensity present a microcracking process, no longer having a linear
elastic mechanical behavior. Furthermore, after reaching the maximum stress, the response curve shows softening.
The continuous damage mechanics allows the construction of constitutive models that represent this behavior well.
When using a damage model, the mechanical properties of the material are penalized based on the evolution of
the degradation process. Thus, it is possible to represent the appearance of microcracks and even macrocracks as
regions where localized deformations occur. Thus, the hypothesis of continuity of the material remains valid, even
when very degraded.

Over time, different damage models have emerged to treat concrete degradation. Different damage criteria,
different evolution laws and scalar or tensor damage variables are used. Models with a scalar damage variable can
reproduce the behavior of concrete well, as can be seen in the models presented by Mazars [1] and Manzoli et al.
[2]. The Mazars [1] model is suitable to degrade the mechanical properties of bulk elements subjected to any state
of stress, uses a damage criterion based on maximum elongation strain and allows it to obtain response curves of
the structure close to the experimental ones. But it does not allow to model the cracks in a discrete way, since the
degradation is distributed in the most stressed elements. The Manzoli et al. [2] model was developed to be used
in high aspect ratio interface elements, which according to the continuum strong discontinuity approach presented
in Oliver et al. [3] makes them suitable for representing discrete cracks. The damage criterion is based on normal
tensile stress at the base of the interface elements, so it is not able to represent the degradation of compressed
elements.

The cracking of concrete is explained by the heterogeneity of the material that can be seen at the smaller
scales. The mesoscale is the scale where the matrix, coarse aggregates and the interfacial transition zone (ITZ) are
observed, which is the weakest link and where degradation begins. At this scale, concrete can be understood as
a composite of particles and it is possible to relate its heterogeneity to the shape of the crack, giving it physical
meaning. Thus, numerical modeling at this scale leads to complex answers even with the use of simple constitutive
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models for each component of the material [4]. At mesoscale, using FEM, Ramos et al. [5] modeled reinforced
concrete beams using the Mazars [1] model and Rodrigues et al. [6] and Vieira et al. [7] modeled simple and rein-
forced concrete beams, respectively, using the Manzoli et al. [2] model. The results obtained in these works show
that the different damage models allowed to obtain response curves close to the experimental ones. Furthermore,
the representation of the heterogeneity of concrete brought improvements in the identification of degraded regions.

Amaral et al. [8] made a comparative study of the applicability of different damage models for ductile ma-
terials. The focus was to identify the advantages and disadvantages of each for their more efficient use in the
automobile industry. Focused on the construction industry, looking for a more efficient concrete modeling, in this
work a comparative study of the performance of the damage models presented by Mazars [1] and Manzoli et al.
[2] is developed. A computational code is developed for the analysis by FEM of the phenomenon of concrete
degradation in which the two damage models were implemented and concrete is represented in mesoscale. An
alternative form is used to model the mesoscale in which the meshes representing the mortar and coarse aggregate
are generated independently and superimposed to form the composite. The goal is to make the pre-processing
step simpler. Furthermore, the finite elements that represent the aggregates do not add degrees of freedom to the
problem, so it also aims to reduce the computational cost of the analysis. To improve the quality of the answers, the
formulation used in the implementation is geometrically exact. It is a positional approach to FEM developed by
Coda and Greco [9]. The implemented code is used to model a 2D reinforced concrete sample. Steel is modeled
embedded in concrete and does not add degrees of freedom to the problem.

2 Numerical Modeling

2.1 The Finite Element Method based on positions

The positional approach is a naturally non-linear geometric version of the FEM in which the unknowns are
the element node coordinates rather than the displacements used in the classical method. It emerged in the works
of Bonet et al. [10], who used positions such as unknowns, and Coda and Greco [9] which they proposed the
method and applied to 2D frame elements. In the method, as it is geometrically exact, the internal force vector
is not obtained from a linear relationship between the stiffness matrix and the nodal positions. Then the Newton-
Raphson method is used for the iterative solution of the problem. To use the technique, it is necessary to calculate
the internal force vector and the tangent stiffness matrix for each trial. These terms are obtained as a function of the
specific deformation energy and depend on the constitutive model and the type of element used. The elements used
in this work are trusses and 2D solids with linear approximation. The way to calculate the internal force vector and
the tangent stiffness matrix of these elements is detailed in Coda [11]. The constitutive model used is the Saint-
Venant-Kirchhoff (SVK) model, suitable to describe the behavior of materials that present large displacements and
moderate strains. It uses the second Piola-Kirchhoff stress tensor and the Green-Lagrange strain tensor.

The SVK specific deformation energy is given by

Ψ(E) =
1

2
EklCklijEij , (1)

where E is the Green deformation and C is the elastic constitutive tensor.

2.2 Coupling matrix and reinforcement

The strategy used to model the coarse aggregates and steel allows the representation of these reinforcements
with perfect adherence, without adding degrees of freedom to the problem and without the need for nodes to
coincide with those of the matrix. The idea appeared in Vanalli et al. [12] to couple fiber and matrix elements
using traditional FEM. Sampaio et al. [13] extended the idea to the FEM positional formulation and used it for
fiber elements with any order of polynomial approximation. Using the same strategy, Paccola and Coda [14] were
successful in coupling particles and matrix to model composites with elastic behavior. In this work, to connect
the matrix with fibers and particles, the formulations presented in Sampaio et al. [13] and Paccola and Coda [14]
are used respectively. The idea is to represent the nodal positions of the reinforcement elements using the shape
functions of the matrix elements. The deductions presented by Sampaio et al. [13] and Paccola and Coda [14]
allow us to conclude that the internal force vector and the tangent stiffness matrix of the reinforcements can be
calculated as a function of their own nodes and then distributed over the nodes of the elements of the matrix. Thus,
these values are added to those obtained for the matrix itself and the problem can be solved.
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3 Damage models

3.1 Mazars damage model

The damage model of Mazars [1] is defined by a scalar variable and can represent the degradation for any
stress state. The damage criterion can be defined as

f (Eeq, D) = Eeq − Elim(D) ≤ 0, (2)

where variable Elim is the maximum elongation strain in the strain history and Eeq is a is an equivalent strain
given by

Eeq =
√

(E1)
2
+ + (E2)

2
+ + (E3)

2
+. (3)

The term (Ei)+ corresponds to the positive components of the principal values of the strain tensor. At the beginning
of the process Elim is the strain corresponding to the concrete tensile strength Ed0. The formulation used here
employs Green-Lagrange strain.

The damage variable is given by
D = αTDT + αCDC . (4)

The terms DT and DC are damage variables related to tensile and compressive behavior of the concrete. These
variables are given by:

DT = 1− Ed0 (1−AT )

Eeq
− AT

eBT (Eeq−Ed0)
and DC = 1− Ed0 (1−AC)

Eeq
− AC

eBc(Eeq−Ed0)
, (5)

where AT , AC , BT and BC are parameters of the Mazar’s damage model to be identified based on results of
uniaxial tensile and compression tests.

The coefficients αT and αC are calculated by

αT =

3∑
i
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i

)
+
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EC
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)
+
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< 0 and
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= 0 if
(
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The term
(
ST
i

)
+

is given by the value of the i-th principal stress if it is positive and zero if it is not. The term(
SC
i

)
− is given by the value of the i-th principal stress if it is negative and zero if it is not. The variable (EV )+

represents the total state of elongation, given by the principal strains as

(EV )+ =
∑
i

(
ET

i

)
+

+
∑
i

(
EC

i

)
+
. (10)

Now all terms in eq. (4) can be calculated. Then the damage variable can be used to penalize material stiffness
and determine nominal stress tensor. This is done as

S̃ij = (1−D)CijklEkl (11)

where S̃ is second Piola-Kirchhoff stress tensor , C is the fourth-order elastic constitutive tensor and E is the
Green-Lagrange strain tensor.

CILAMCE 2021-PANACM 2021
Proceedings of the XLII Ibero-Latin-American Congress on Computational Methods in Engineering and

III Pan-American Congress on Computational Mechanics, ABMEC-IACM
Rio de Janeiro, Brazil, November 9-12, 2021



Concrete structures modeled in mesoscale with different damage models

3.2 Manzoli damage model

The damage model used by Manzoli et al. [2] is designed to be used on high aspect ratio interface elements.
Therefore, when using it, only the interface elements are degraded and the other elements present linear elastic
behavior. As in this model only the tension component of the stress tensor is used, it is limited to cases where the
mode I fracture predominates. The criteria for the existence of damage φ is given by

φ = σnn − q(r) ≤ 0, (12)

where σnn is the Cauchy stress normal to the major base of the interface element, q and r are the stress and strain-
like internal variables, respectively. The function q(r) defines the softening law. Dividing all terms of φ by (1−d),
the damage criterion for the effective stress is given by

φ = σnn − r ≤ 0, (13)

where was made (r = q/(1− d)) to control the elastic domain in the space of effective deformations. Isolating d,
the damage variable is given by

d = 1− q(r)

r
. (14)

Considering the loading-unloading conditions and the consistency condition, for a pseudo-time t associated
with the loading process, the variable r is always given by the highest value between σnn up to that moment and
the initial value of the process r0 given by the tensile strength ft of the material. So it can be written as

r = max(σnn(s), r0) | s ∈ [0, t]. (15)

To represent the softening, the same exponential law already used successfully by Rodrigues et al. [6] for
mesoscale concrete was chosen. It is given by

q(r) = ft exp

(
f2t
GfE

h(1− r/ft)
)
, (16)

where h is the smallest height of the interface element, Gf is the fracture energy for mode I, and E is the Young’s
modulus of the material.

The damage implementation algorithm is adapted from the version used by Manzoli et al. [2] and it is the
implicit-explicit integration scheme (IMPL-EX) developed in Oliver et al. [15]. As in the implemented constitutive
model the second Piola-Kirchhoff stress tensor is used, it is necessary to calculate the Cauchy stress tensor through
it.

To create the interface elements, the mesh fragmentation technique presented in Manzoli et al. [2] is used,
which is divided into 3 main steps. Step 1 consists of generating the regular mesh for the entire sample. Step 2
consists of reducing the dimensions of all elements, leaving an empty space between them for the positioning of
the interface elements. Finally, in Step 3 the interface elements are inserted into these spaces.

4 Numerical example

4.1 Four-point bending test

This example simulates a four-point bending test on a reinforced concrete beam. This beam was experimen-
tally tested by Álvares [16]. The geometry and boundary conditions of the structure are shown in Fig. 1 (a). The
beam length is 2600 mm, the height 300 mm and the thickness 120 mm. To represent a structure with the dimen-
sions described in mesoscale, it is necessary to use a very refined mesh. Therefore, the computational cost is high.
So, trying to get around this problem, as there is an axis of symmetry in the beam, it was decided to simulate only
half of it as shown in Fig. 1 (b). The load is applied as a prescribed displacement at the point where the reaction
force F is observed. The Fig. 1 (c) shows the cross-section of the beam.

The structure was analyzed 3 times with the developed code. In the first analysis, concrete is represented
as a composite formed by mortar and coarse aggregate. Among the elements that represent the mortar, interface
elements are inserted. Their constitutive model is the damage model presented by Manzoli et al. [2]. This analysis
is referred to as Mesoscale-interface damage. In the second analysis, concrete is represented as a homogeneous
material, interface elements are not created and all elements have a mechanical behavior defined by the damage
model of Mazars [1]. This analysis is referred to as Macroscale-Mazars. In the third analysis, concrete is repre-
sented as a composite formed by mortar and coarse aggregate, interface elements are not created and all elements
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have a mechanical behavior defined by the damage model of Mazars [1]. This analysis is referred to as Mesoscale-
Mazars. The mesh that represents the concrete is formed by linear approximation triangular elements and in the
three cases analyzed were created starting from a mesh with 87012 elements and 43907 nodes. This mesh is al-
ready suitable for use in Macroscale-Mazars and Mesoscale-Mazars analysis. But in Mesoscale-interface damage
analysis, another 260236 interface elements were created, totaling 347248 elements and 261036 nodes. In all anal-
yses, the same mesh was used to represent the steel. Linear approximation fiber elements totaling 400 elements
and 800 nodes were used. In the analyses with the presence of coarse aggregates, they were randomly positioned,
the particle size distribution used the Fuller curve, occupied 40% of the sample volume and the dimensions ranged
from 4.80 mm to 19 mm. The mesh of aggregates is formed by linear approximation triangular elements and totals
34852 elements and 33632 nodes.

The known mechanical properties of the study by Álvares [16] for concrete are the Young’s modulus, tensile
strength and Poisson’s ratio given respectively by E = 29200 MPa, ft = 2.04 MPa and υ = 0.2. It was assumed
that the aggregate used is granite and has E = 55300 MPa and υ = 0.16, values determined by Lee et al. [17]. The
properties of the mortar were obtained using the parallel model of Counto [18] from the information of concrete
and coarse aggregate. The values obtained are E = 19150 MPa and υ = 0.23. The interface elements were
adopted with the same Young’s modulus of the mortar and υ = 0.0. The parameters AT = 0.995, AC = 0.85,
BT = 8000 and BC = 1620, determined for concrete by Álvares [16], were used in the damage model for the
Macroscale-Mazars and Mesoscale-Mazars analysis. The term Ed0 was used for concrete in Macroscale-Mazars
analysis as Ed0 = 7 · 10−5, as was done by Álvares [16]. In the Mesoscale-Mazars analysis, it was calculated
as a function of the Young’s modulus adopted for the mortar, also assuming that its tensile strength is the same
as that of concrete. So we got Ed0 = 1 · 10−4. For the Mesoscale-interface damage analysis, the damage model
parameters are the fracture energy for mode I Gf = 0.10 MPa/mm, defined by Vieira et al. [7], and the concrete
tensile strength, already known from the experimental result. For the reinforcement, the perfect elastic behavior
with E = 196000 MPa was considered. The analyses were carried out considering a plane stress state with the
application of a vertical displacement of 10.0 mm. The prescribed displacement was divided into 100 increments
when applying the damage model of Mazars [1] and 800 increments when using the damage model presented by
Manzoli et al. [2].

(c)

(b)

(a)

[mm]

Figure 1. Geometry and boundary conditions

In Fig. 2 are presented the curves that relate the reaction force F with the displacement δ in the middle of
the beam span, obtained for each analysis. In general, it was possible to observe a good agreement between the
results obtained in this work and the experimental results of Álvares [16]. The curve obtained for the Mesoscale-
Mazars analysis was the most different from the experimental results, which is attributed to the simplified form
used to adopt the damage model parameters, since the response of the Macroscale-Mazars analysis, which uses
the same damage model, was adequate. In Fig. 3 (a) the discrete cracking obtained in the Mesoscale-interface
damage analysis is presented. It shows multiple approximately spaced cracks and their inclination change when
approaching the support, as observed experimentally. In Fig. 3 (b) and (c) we can see the damage distribution in the
structure for the Macroscale-Mazars and Mesoscale-Mazars analysis respectively. The blue color represents that
the region is completely degraded and the red color that there is no damage. Comparing the damage distribution
in the Macroscale-Mazars and Mesoscale-Mazars analysis, it is observed that the representation of the particles
contributed to the greater location of the damage, with more parts of the matrix remaining intact, as it actually
happens. However, it is still not possible to visually represent the cracking of concrete with the quality of the
Mesoscale-interface damage analysis. Comparing the computational cost, the analyses that use the damage model
of Mazars [1] are more economical, as they have less degrees of freedom and need less loading steps for the results
to converge. The higher computational cost of the Mesoscale-interface damage analysis is due to the presence of
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Figure 2. Force-displacement curve for each analysis

(a)

(b)

(c)

Figure 3. Discrete crack obtained in Mesoscale-interface damage analysis (a) and structure damage distribution
for Macroscale-Mazars (b) and Mesoscale-Mazars (c) analysis

the interface elements and the need for more loading steps to use the IMPL-EX, which improves the convergence
of the analysis but has this cost.

5 Conclusions

In this work a computational code was developed using FEM and the performance of two different damage
models applied to a reinforced concrete beam was compared. The model presented by Mazars [1], as implemented
here, is more efficient than the model presented by Manzoli et al. [2] in relation to the computational cost of
the analysis, but it does not allow the representation of discrete cracks. Therefore, with the modeling strategies
presented, it is concluded that, for a beam similar to the one analyzed, the Mazars [1] model is better when the
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objective is to determine only the response curve. Nor is the representation of particles necessary. But if the
objective is to analyze the cracking, the model presented by Manzoli et al. [2] is most suitable.
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