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Abstract. This work presents an enhanced explicit time-marching formulation to analyse hyperbolic models, 

which is based on locally-defined adaptive time-integrators and time-step values. The discussed technique 

considers single-step displacement/velocity recurrence relations, providing an easy to implement, truly self-

starting methodology. The stability limit of the approach is twice that of the central difference method, and it 

allows adaptive controllable numerical dissipation to be applied, improving the accuracy and versatility of the 

method. As an explicit approach, the technique does not require the solution of any system of equations, standing 

as a very efficient methodology. Subdomain decomposition procedures, associated to multiple time-step values 

and sub-cycling, are also considered, improving the performance and accuracy of the technique. The entire 

formulation is carried out taking into account automated, self-adjustable computations, requiring no effort and/or 

expertise from the user. At the end of the paper, numerical results are presented and compared to those of standard 

techniques, illustrating the great effectiveness of the discussed approach. 
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1  Introduction 

Time-dependent hyperbolic equations have numerous applications in geophysics, as they make it possible to 

describe time-dependent continuous domain physical problems. However, their analytical resolution is often 

unfeasible, thereby, numerical methods are commonly used to find approximate solutions. Time domain solution 

algorithms usually employ step-by-step time integration procedures, solving initial value problems considering a 

temporal discretization. Numerical methods are basically divided into two groups:  explicit methods [1-9], whose 

main advantage is that there is no need to deal with algorithms for solving systems of equations, making them 

computationally effective, yet with stability restrictions; and implicit methods [9-15], which usually provide 

unconditional stability, but are considerably more computationally expensive per time step (for a comprehensive 

review, see [16]).  

In this paper, an explicit formulation with adaptive time integrators developed by Soares [1] is studied, considering 

the implementation of subcycling techniques to improve the efficiency and accuracy of the proposed time 

integration algorithm. This method is based on single-step displacement-velocity relationships; it is truly self-

starting; provides twice the stability limit of the central differences method (CDM); and, as an explicit approach, 

it does not need to consider any solver routines. In this work, as a further development for this solution procedure, 

subdomain splits and local time-step values are considered, taking into account also automated adaptive 

evaluations. Thus, more efficient and accurate analyses can be enabled. 

The adopted time integration procedure is based on adaptive parameters that aim to provide numerically 

efficientedissipative algorithms, aiming to eliminate the influence of spurious high frequency modes and reduce 

amplitude decay errors. In this sense, a time integrator β is adaptively calculated taking into account the maximum 
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sampling frequency of the elements and the value of the local time-step. In addition, the adaptive parameters are 

activated considering the results of the previous local time steps. Thus, by introducing different time-steps in the 

analysis (considering subdomain divisions and subcycling techniques), the performance of the methodology can 

be improved. 

The technique discussed in this work can be used to solve problems of different natures, however, here, acoustic 

analyses and geophysical applications are focused. In geophysics, it is routinely necessary to analyze 

heterogeneous domains, characterized by multiple layers of fine stratigraphy and distinct geometries. In this sense, 

automatic subcycling techniques become very attractive, since different layers/media can be efficiently analyzed 

considering the appropriate subdomain divisions.  

This article is divided into five sections, the first being this introduction. In the second section, the equations that 

govern the time integration strategy are presented. In the third section, a generic automatic methodology for sub-

cycling is discussed. In the fourth section, two numerical applications are considered, illustrating the good 

performance of the proposed technique (in this case, the obtained results are compared to those of the CDM and 

of the explicit generalized α method (EG-α) [8], as well as with analytical solutions, whenever available). In the 

fifth and final section, conclusions are presented. 

2  Governing equations and time integration strategy 

The governing system of equations describing a dynamic model is given by: 

 

𝐌�̈�(t) + 𝐂�̇�(t) + 𝐊𝐔(t) = 𝐅(t), (1) 

where 𝐌, 𝐂, and 𝐊 stand for the mass, damping, and stiffness matrices, respectively;  �̈�(t),  �̇�(t) and 𝐔(t) are 

acceleration, velocity, and displacement vectors, respectively; and 𝐅(t) stands for the force vector. The initial 

conditions of the model are given by: 𝐔0 = 𝐔(0) and �̇�0 = �̇�(0), where 𝐔0 and �̇�0 stand for initial displacement 

and velocity vectors, respectively. 

In this work, the standard Finite Element Method (FEM) is used for the spatial discretization where the domain of 

the problem is divided into elements, allowing the calculation of local matrices and vectors, which can then be 

assembled to generate the global matrices 𝐌, 𝐂 and 𝐊, and vector 𝐅. 

For the time-domain solution of the system of equations (1), the following algorithm is proposed by Soares [1]: 

 

(𝑴 +
1

2
𝛥𝑡𝑪) �̇�𝑛+1 = ∫ 𝑭(𝑡) ⅆ𝑡

𝑡𝑛+1

𝑡𝑛
+ 𝑴�̇�𝑛 −

1

2
𝛥𝑡𝑪�̇�𝑛 − 𝛥𝑡𝑲 (𝑼𝑛 +

1

2
𝛥𝑡�̇�𝑛), (2a) 

𝑼𝑛+1 = 𝑼𝑛 +
1

2
𝛥𝑡�̇�𝑛 +
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𝛥𝑡�̇�𝑛+1 +

1

2
𝛥𝑡𝑽𝑛+1, (2b) 

where a 𝐕n+1 term is considered in equation (2b), allowing to obtain greater stability limits for the explicit analysis. 

The vector 𝐕n+1 is computed as follows: 

(𝑴𝑒 +
1

2
𝛥𝑡𝑪𝑒) 𝑽𝑒

𝑛+1 = −𝛥𝑡𝑪𝑒�̇�𝑒
𝑛+1 −

1

8
𝛥𝑡2𝑲𝑒((𝛽𝑒

𝑛)2�̇�𝑒
𝑛 + (1 + 𝛽𝑒

𝑛)�̇�𝑒
𝑛+1). (3) 

As can be seen, in the proposed new formulation, the temporal integration parameter of the method is spatially and 

temporally locally defined, as indicated by the sub and superscripts of βe
n. Thereby, different values can be assigned 

to the time integrator, for each element of the model and for each time step of the analysis, providing a very flexible 

approach. Thus, a spatial/temporal adaptive procedure may be developed, locally computing the time integration 

parameter βe
n according to the properties of the model and to the evolution of the computed fields. 

The strategy here is to adopt βe
n>0 whenever and wherever numerical damping may be necessary, and βe

n = 0 

otherwise. This can be automatically carried out based on an oscillatory criterion. In this sense, if the computed 

response of a degree of freedom of the model oscillates along time, the βe
n parameters of the elements surrounding 

this degree of freedom are modified, locally introducing numerical dissipation into the analysis. Once no 

oscillatory behaviour is observed, βe
n = 0 is considered. This is automatically carried out here based on an 

oscillatory criterion controlled by a φ parameter, that is calculated at each time step and for each element. The 

calculation of this oscillatory parameter is given by: 𝜑𝑒
𝑛 = 𝛴𝑖=1

ⅆ𝑒 ||𝑢𝑖
𝑛 − 𝑢𝑖

𝑛−2| − |𝑢𝑖
𝑛 − 𝑢𝑖

𝑛−1| − |𝑢𝑖
𝑛−1 − 𝑢𝑖

𝑛−2||, 
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where ⅆ𝑒  stands for the total amount of degrees of freedom of the element. Therefore, when φ ≠ 0, at least one 

degree of freedom of the element is oscillating. Thus, the algorithm activates maximal numerical dissipation at the 

maximal sampling frequency of the element Ωe
𝑚𝑎𝑥, effectively dissipating the highest modes of the problem. So, 

when φe
n ≠ 0, βe

n assumes the following value: 

𝛽𝑒
𝑎𝑐𝑡 = (−𝛺𝑒

𝑚𝑎𝑥5 + 16𝛺𝑒
𝑚𝑎𝑥3−32𝛺𝑒

𝑚𝑎𝑥2𝜁𝑒 + 8(−𝛺𝑒
𝑚𝑎𝑥8𝜁𝑒

2−16𝛺𝑒
𝑚𝑎𝑥6𝜁𝑒
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6 −

2𝛺𝑒
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𝑚𝑎𝑥6𝜁𝑒
2 − 96𝛺𝑒

𝑚𝑎𝑥5𝜁𝑒
3 − 4096𝛺𝑒
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𝑚𝑎𝑥2𝜁𝑒
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𝑚𝑎𝑥𝜁𝑒
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(4) 

where ζe = ςe/(2ρe𝜔𝑒
𝑚𝑎𝑥), and 𝜔𝑒

𝑚𝑎𝑥, ρe and ςe stand for physical properties of the medium (maximum natural 

frequency, mass density and viscous damping coefficient, respectively). For φe
n = 0, βe

n = 0 is considered. 

3  Sub-cycling 

Subcycling is a subdomain decomposition associated with multiple time-steps. This technique allows a domain to 

be discretized considering different refinement levels, without limiting the explicit analysis of time-marching 

restricted to its smallest critical time-step, which is commonly observed. The technique allows larger time-step 

values for different subdomains, resulting in lower computational costs. Despite allowing different time-step 

values for different subdomains, enabling lower computational costs, sub-cycling must be properly considered, 

once excessive subdivisions may provide deterioration in both accuracy and efficiency. Here, an automatic 

algorithm was developed to improve efficiency without compromising accuracy. 

The following algorithm is considered to define the subdomain decomposition: (i) calculate the critical time-steps 

of all elements, finding the smallest 𝛥𝑡𝑒 of the model (i.e., 𝛥𝑡𝑏, where 𝛥𝑡𝑏 = min (𝛥𝑡𝑒)), which is the basic time-

step for the controlled subdivision of the domain; (ii) with 𝛥𝑡𝑏 defined, calculate subsequent time-step values as 

multiple of the power of 2 of this minimal time-step value (i.e., calculate 𝛥𝑡𝑖, where 𝛥𝑡𝑖 = 2(ⅈ−1)𝛥𝑡𝑏); (iii) 

associate each element to a computed time-step value (i.e., to 𝛥𝑡𝑖, where  𝛥𝑡𝑖 ≤ 𝛥𝑡𝑒 ≤ 𝛥𝑡𝑖+1 and 𝑖 indicates the 

subdomain of that element); (iv) associate a time-step value (i.e., associate a subdomain) to each degree of freedom 

of the model considering the lowest time-step value of its surrounding elements. 

Once the subdomains of the model are stablished, displacement and velocity values along the boundaries of these 

subdomains may need to be interpolated. In this work, the following expressions are adopted for these 

interpolations: 

𝑼(𝑡) =
1

2𝛥𝑡
(�̇�𝑛+1 − �̇�𝑛)𝑡2 + �̇�𝑛𝑡 + 𝑼𝑛, (5a) 

�̇�(𝑡) =
1

𝛥𝑡
(�̇�𝑛+1 − �̇�𝑛)𝑡 + �̇�𝑛, (5b) 

where 𝑡 is the current increment of time (0 ≤ 𝑡 ≤ 𝛥𝑡) for the focused subdomain and ∆𝑡 is the time-step value of 

the degree of freedom being interpolated, which is related to another subdomain. 

4  Numerical application 

In this section, two numerical applications are considered to illustrate the performance and potentialities of the 

adaptive explicit time-marching technique with subcycling. First, it is considered a square homogeneous acoustic 

membrane, and, subsequently, the propagation of acoustic waves in the Marmousi2 model by Martin et al. [17] 

are analysed. The computed results are compared to those of the CDM, EG-α and β-adaptive method without 

subcycling. The EG-α [8] is considered here since it is a very well-known dissipative method. In the following 

analyses, lumped mass and damping matrices are always considered.  
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4.1 Application 1 

In this application, the transverse motion of a square membrane, which has a unitary constant initial displacement 

prescribed over its central domain and null displacements prescribed over its entire boundary, is studied. The 

physical properties of the membrane are c = 10 m/s (wave velocity) and ρ = 1.0 kg/m3 (mass density). The model 

geometry is a square of side 𝐿 =  10 𝑚, and the initial condition region is a centered square of side 𝑙 = 5 𝑚. The 

symmetry of the membrane is considered and just 1/4 of it is discretized. 

The membrane was discretized considering a concentration of elements along the boundary of the domain and the 

region of application of the initial condition, generating a mesh of 195944 linear triangular elements and 98525 

nodes. This strategy was adopted because the application of the initial displacement generates a potential 

discontinuity, in addition, the analyzed degree of freedom (x=5, y=5) is also in this more refined area. Fig. 1a 

shows the 𝛥t calculated to each element, resulting in three time-step subdomains, as shown in Fig. 1b. The active 

parameter values calculated for β with subcycling, are shown in the Fig. 1c. 

This example has its analytical response known in the literature, which is given by: 

𝑢(𝑥, 𝑦, 𝑡) =
64𝐴

𝜋2
∑  

∞

𝑚=1

∑  

∞

𝑛=1

𝑐𝑜𝑠 (𝜇𝑚𝑛𝑡)

𝑚𝑛 
𝑐𝑜𝑠 (

𝑚𝜋

4
) 𝑐𝑜𝑠 (

𝑛𝜋

4
) 𝑠𝑖𝑛2 (

𝑚𝜋

4
) 𝑠𝑖𝑛2 (

𝑛𝜋

4
) 𝑠𝑖𝑛 (

𝑚𝜋𝑥

𝐿
) 𝑠𝑖𝑛 (

𝑛𝜋𝑦

𝐿
), (6) 

where 𝜇𝑚n = (𝑐𝜋/𝐿)(𝑚2 + 𝑛2)
1
2 and 𝐴 is the amplitude of the applied initial displacement.  

 

   

(a) (b) (c) 

Figure 1. Subdomain decomposition and active β values for the first example (a) 𝛥𝑡 for each element, (b) 𝛥𝑡 

for each subdomain, (c) active β values for the β-adap/sub. 

 

In Fig. 2, time-history results for the transversal displacement are depicted, taking into account several time-

marching procedures and the model’s analytical response. As one can observe, the discussed time-marching 

procedure provides much more accurate results than standard techniques, and the effectiveness of this novel 

approach is improved once subcycling is applied. In fact, as one can notice, the discussed adaptive technique 

allows properly dissipating spurious numerical oscillations, providing much better responses than standard 

dissipative (e.g., the EG-α [8]) or non-dissipative (e.g., the CDM) approaches. 

In Fig. 3, snap-shots of the results computed at time t = 1s, t=2s and t = 3s are depicted, considering the selected 

different time-marching techniques compared to the analytical answer. As can be observed, the CDM and EG-α 

do not provide appropriate results and spurious oscillations dominate the computed responses. On the other hand, 

good results are provided by the β-adap and β-adap/sub, illustrating their enhanced performance. 

In Tab.1, the performance of each adopted technique is described. As one can observe, the β-adap/sub 

methodology provides the most accurate and efficient analyses (an Intel Core i7 -9750H 2.60GHz processor is 

considered for the analyses, with multiplications by the element stiffness matrices parallelized with OpenMP using 

8 threads). 
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Figure 2. Time history results for the discussed time-marching procedures 

Table 1. Performance of the analyses for the first example 

Method 𝛥𝑡(10−3s) Steps Error (10−1) 

(relative error) 

CPU Time (s) 

(relative time) 

CDM 0.33560 8940 2.495 (1.47) 157.790 (3.45) 

EG-𝛼 0.30247 9919 2.420 (1.43) 171.720 (3.75) 

β-adap 0.67121 4470 2.039 (1.20)   88.430 (1.93) 

β-adap/sub 2.68486 1118 1.692 (1.00)   45.700 (1.00) 

 

 

     
(a1) (b1) (c1) (d1) (e1) 

     
(a2) (b2) (c2) (d2) (e3) 

     
(a3) (b3) (c3) (d3) (e3) 

Figure 3. Computed fields along the discretized domain: (a) Exact solution, (b) CDM, (c) EG-α, (d) β-adap 

and (e) β-adap/sub at (1) 1s, (2) 2s and (3) 3s 
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4.2 Application 2 

In this second example, an extension of the original Marmousi2 model created by Martin et al. [17] is analysed. 

The model has a lateral extension of 17 km and a depth of 3.5 km and includes a total of 199 geological layers, as 

well as an extended water layer of 450 m deep. Here, the original finite difference synthetic data are transformed 

into a FEM mesh with 224731 nodes and 223672 linear square elements. Thus, just the wave propagation velocity 

of each material controls the variability of the element time-steps. In Fig.4, the obtained subdomain decomposition 

and active β values are depicted.  

Fig. 5 shows the computed fields along the model, taking into account the selected solution procedures, and Table 

2 describes the performance of the analyses. As can be seen, the subdomain decomposition and subcycling 

techniques performed well for this complex heterogeneous model, allowing the evaluation of precise solutions at 

lower computational costs. 

 

  
(a) (b) 

  
(c) (d) 

Figure 4. Subdomain decomposition and active β values for the second example: (a) 𝛥𝑡 for each 

element, (b) 𝛥𝑡 for each subdomain, (c) active β values for the β-adap and (d) active β values for the β-

adap/sub. 

Table 2. Performance of the analyses for the second example 

Method 𝛥𝑡(10−3s) Steps CPU Time (s) 

(relative time) 

CDM 2.0727 700 40.210 (2.22) 

EG-𝛼 1.8680 780 47.520 (2.63) 

β-adap 4.1455 350   24.300 (1.34) 

β-adap/sub 8.2909 175   18.080 (1.00) 

 

  
(a) (b) 

  
(c) (d) 

Figure 5. Computed fields along the discretized domain:(a) CDM, (b) EG-α, (c) β-adap and (d) β-

adap/sub at t=1.4s 
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5  Conclusions 

In this paper an explicit fully adaptive time-marching formulation for hyperbolic models is presented, in which 

both the time-step and time integrator values adapt to the properties of the discretized model, allowing to provide 

a more efficient and accurate solution methodology. This methodology is applied with the subcycling technique, 

which allows better calculations of time-step values. In this work, two acoustic examples are discussed to illustrate 

the good performance of the proposed approach. As the examples demonstrate, the proposed formulation allows 

to obtain better results than standard solution procedures, considering less computational efforts. In the second 

example, a complex heterogeneous model is studied, highlighting the robustness of the proposed automated 

formulation. 
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