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Abstract. Classical finite difference methodologies, obtained through Taylor series expansions of the functions,
are feasible only when the points are distributed on structured or Cartesian grids defined over rectangular domains
or mapped to rectangles. In this paper we present a technique capable of generating approximations for the two-
dimensional acoustic and elastic wave equations on structured and unstructured meshes over more general domains.
The stencils were calculated at each point of the arbitrary grid by interpolation techniques and the results shown
that the order of accuracy, obtained when the structured grid is used, is maintain to case unstructured and minimum
number of points of the stencils.
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1 Introduction

A paper that introduced finite difference discretizations in transient problems was [1], where Maxwell’s equa-
tions of electromagnetism are approximated on interleaved meshes, which can be understood as a dual mesh con-
taining points of a discrete finite difference mesh and an intermediate mesh, where the classical finite difference
operators are obtained at the points of the original mesh by means of approximations performed on an intermediate
mesh. Generalized finite difference methods (GFDM) presented in [2] made it possible to simulate applied me-
chanics problems on more general domains and irregular meshes, where approximations for elliptic and parabolic
problems are obtained by the method of least squares. In [3] the finite difference approximations on intercalated
meshes introduced in the work of Kane Yee [1] are used in modeling seismic wave propagation problems. In what
follows, the GFDM was extended in [4] where hyperbolic partial differential equations are also studied.

2 Transient wave equations

Let Ω ⊂ R2 be a smooth subset and [0, T ] be a time interval. The model problem with source term associated
with the acoustic wave equation will be defined as

∂2u

∂t2
−∇ · (c2∇u) = f(x, y, t) on Ω× (0, T ), (1)

u(., t) = 0 on ∂Ω× (0, T ), (2)
u(., 0) = u0, ut(., 0) = v0 on Ω. (3)

with c constant.
The mathematical model capable of describing the propagation of elastic waves given a vectorial fieldu(u1, u2)

that satisfies it, under these conditions, is given by
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
ρ
∂2u

∂t2
−divσ(u) = f , on Ω,

σ(u) = Dε(u) on Ω,

u = 0 on Γ,

(4)

subject to initial conditions

u(x,0) = u0(x),
∂u(x,0)

∂t
= v0(x), (5)

where ui = ui(x1, x2, t), i = 1, 2, represent the displacements of the solid oriented by the directions x1 and x2,
in that order.

Here the ρ parameter is the density of the medium, which we will adopt as constant, σ = [σ1,σ2] is the
symmetric Cauchy stress tensor, D = 2µI + λI ⊗ I is the isotropic elasticity tensor where Iis the second-order
identity tensor and I is the fourth-order identity tensor on symmetric second-order tensors. The linear strain tensor
is defined as ε(u) = 1

2 (∇u + ∇uT ). Furthermore, the symmetric strain tensor can be defined, under these
media conditions, as a function of the constitutive parameters. That is, the functions defining the stress vector
σi := [σi1, σi2]T , i = 1, 2 can therefore be written in terms of the constitutive parameters

σ1 =

 (2µ+ λ)∂u1

∂x1
+ λ∂u2

∂x2

µ
(

∂u1

∂x2
+ ∂u2

∂x1

)  ,σ2 =

 µ
(

∂u1

∂x2
+ ∂u2

∂x1

)
λ∂u1

∂x1
+ (2µ+ λ)∂u2

∂x2

 . (6)

where µ and λ are the Lamé coefficients. For plane and linear stresses the Lamé coefficients are given by the
relations

λ =
Eυ

(1 + υ)(1− 2υ)
, µ =

E

2(1 + υ)
, (7)

where E and υ are the modulus of elasticity and Poisson’s ratio, respectively.
We cite [5, 6] and [7, 8], in that order, as example articles where classical operator approximations are

presented for the acoustic and elastic wave equations.

3 Approximations of operators on unstructured meshes

Obtaining approximations for differential operators can be accomplished by defining stencils and calculating
their coefficients. The mathematical model of a generic boundary value problem can be abstractly presented as:
Finding a function u(x): Ω −→ Rnsd , ∀x ∈ Ω, so that

L(u) = f on Ω,

B(u) = ḡ over ∂Ω,

(8)

where L denotes a differential operator, f is the source term and B a condition on the ∂Ω edge of the domain. In
particular, the spatial differential operators associated with the equations (1) and (4), in that order, will be

L :=
∂2

∂x2
+

∂2

∂y2
(9)

and
L := divσ( ). (10)

The methodology to discretize the equations obtained by the (9) and (10) operators will be feasible for stencils
with arbitrary amounts of points, distributed on uniform or non-uniform meshes. In the following we will rely on
the abstract notations for mesh, points and stencils presented in [9, 10].

Let X be a finite set such that |X| denote its number of elements and N = {x0, . . . , x|N |−1} ⊂ Ω ∪ Γ a set
of indexed points, also called nodes, where the solution can be evaluated and approximated. We will denote the set
of points as N on the inside of Ω by I, so that I := N ∩ Ω. The set of N on the Ω boundary will be denoted by
BP := N ∩ Γ. In addition, for each i ∈ {0, . . . , |N | − 1}, will be associated with the set Ai ⊂ {0, . . . , |N | − 1},
which contains the points adjacent to xi chosen by a certain criterion. Thus, if j ∈ Ai, we have that xj is
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adjacent to xi. For the applications that will be made later it will be enough for us to admit that i ∈ Ai, for all
i ∈ {0, . . . , |N | − 1}.

Being x a given point in N , we associate an index ind(x), that for any i ∈ {0, . . . , |N | − 1}, is given by
ind(xi) := i. It follows that ind(X) will be the set of indices of the points of X in N . In particular, we have that
ind(N ) = {0, . . . , |N | − 1}.

Considering that the equation (8) is a partial differential equation of one scalar variable u(x), its classical
finite-difference approximation over a point xi ∈ I must meet the following relation

Lu(xi) ∼=
∑
j∈Ai

cju(xj), (11)

with the coefficients cj , with j ∈ Ai, calculated such that the value of the operator L on the variable u at the
point xi is given as a linear combination of the values of the function u evaluated at points xj belonging to a
neighborhoodAi of xi. The operator approximation will be characterized by the coefficients cj of the stencil (11).
Classically these coefficients are obtained by Taylor series developments.

In our approach obtaining the coefficients cj of the finite difference stencil centered at xi, in the direct
expression (11), is feasible by replacing the variable u by m functions to be chosen from a set Bi and evaluated at
the point xi. Equivalently, through a Bi basis with m functions ϕl,

Bi := {ϕ1, ϕ2, . . . , ϕm}, (12)

we obtain for each ϕl, l = 1, . . . ,m, an equation,∑
j∈Ai

cjϕl(xj) = Lϕl(xi), (13)

which is evaluated at the point xi, resulting in a system of m linear algebraic equations and |Ai| unknowns cj ,
more details in [10].

If we consider that the functions of the set Bi on (12) are canonical polynomials in two-dimensional space
and in coupled time such as

B := {1, x, y, x2, y2, xy, x2y, xy2, x2y2}. (14)

we extend our result presented in [11] to a 2D domain, so that the system of algebraic equations generated by the
proposed approximation method for finite differences on non-uniform meshes will be given by

Un+1 − 2Un + Un−1

∆t2
+ KUn = Fn, (15)

where Un is the vector of nodal unknowns and K is the stiffness matrix associated with the discretization of the
Laplacian operator. From (15) we explicitly obtain

Un+1 = 2Un −Un−1 + ∆t (Fn −KUn) (16)

as a consequence of the fact that in these difference approximations the mass matrix remains diagonal because, in
time, classical second order discretizations will be adopted in all cases. Moreover, the discrete equation (16) is an
extension to the two-dimensional case of part of the results presented in [11].

4 Structure of meshes and stencils

Figure (1) contains examples of uniform and unstructured media and meshes to be used in future experiments.
As can be seen these are typical finite element meshes Q2. Thus, we illustrate the possibilities for spatial stencils
in Figure (2).
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(a) Uniform mesh
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(b) Curved mesh
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(c) Curved domain I
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(d) Curved domain II

Figure 1. Sequences of point meshes, from left to right: Uniform mesh (a), Curved mesh (b), Curved mesh/domain
(c)-(d).

(a) (b) (c) (d)

Figure 2. Structure of the stencils.

For 9-point space stecils(Figure (2d)) the set of monomials is obtained by the product of the spaces of func-
tions

B9 = {(1, x, x2)⊗ (1, y, y2)}. (17)

The 15-point stencils (Figures (2b) and (2c)) contemplate two situations, namely,

B15 := {(1, x, x2, x3, x4)⊗ (1, y, y2)} or B15 =: {(1, x, x2)⊗ (1, y, y2, y3, y4)}. (18)

The 25-point stencils (Figure (2a)), on the other hand, will be obtained by using the

B25 := {(1, x, x2, x3, x4)⊗ (1, y, y2, y3, y4)}. (19)

When the interior coordinates are randomly perturbed it is possible for non-convex stencils to appear on the
mesh. An isoparametric transformation [12] will, in some cases, lead to stencils of non-convex geometry, where
the associated interpolation functions will be quadratic, resulting in second-order approximations to the interpolant
in the experiments and consequent loss of optimal rate.

5 Numerical experiments

Approximations of the model problem (8) will be made on uniform and non-uniform meshes of 2i + 1 we,
i ∈ {1, 2, 3, . . . , 7}, where the wave speed was set constant c = 1. Adotaremos parâmetros de malha hi = 2−i

CILAMCE 2021-PANACM 2021
Proceedings of the XLII Ibero-Latin-American Congress on Computational Methods in Engineering and
III Pan-American Congress on Computational Mechanics, ABMEC-IACM
Rio de Janeiro, Brazil, November 9-12, 2021



F. Author, S. Author, T. Author

and time step ∆t = hi/20. The final time adopted in the experiments will be Tf := 1. Approximations will be
made for the analytical solutions presented in Table (1).

Solution u(x, y, t) Source f(x, y, t)

t2 sin(πx) sin(πy) 2 sin(πx) sin(πy)(1 + π2t2)

cos(
√
2πt) sin(πx) sin(πy) 0

Table 1. Analytical solutions and associated source terms.

The calculation of the error committed in approximations will be performed in the L2 norm ‖ · ‖, semi-
norm ‖ ∇· ‖ of H1, in addition to the well-known maximal | · |∞ norm. Third-order optimal rates in L2 for
the interpolant ui and second-order rates in the ‖ ∇· ‖ semi-norm are expected in uniform mesh sequences.
Concerning the approximate solution uh suboptimal second-order rates are expected in the norms in L2 and of
the maximum because, asymptotically, the second-order truncation error of the stencils (2d), (2b) and (2c) will
predominate. For the semi-norm of H1 second-order methods must be obtained because the approximation is
reconstructed inside the stencil via the nodal values of the gradient of a second-order interpolant.
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(a) Uniform mesh
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(b) Curved mesh
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(c) Domı́nio curvo I

0.5 1 1.5

− log(h)

-5

-4

-3

-2

-1

0

1

lo
g(
er
ro
)

||u− uh||
||u− ui||
||∇(u− uh)||
||∇(u− ui)||
| · |∞

1

2,5 1

2

(d) Curved domain II

Figure 3. Errors in the convergence study h for the solution t2 sin(πx) sin(πy) on uniform and curved mesh
sequences (a)-(b) and curved domain in the plane wave approximation cos(

√
2πt) sin(πx) sin(πy) (c)-(d).

Over a sequence of uniform meshes suboptimal rates are obtained for the approximation errors associated
with the exact solution in time t2 sin(πx) sin(πy) (Graphic (3a)) in both norms L2 and | · |∞ because the second-
order spatial error of stencils on the domain boundary defines the approximation order of the method. In addition,
optimal rates in the seminorm H1 for the approximation and interpolant are observed. For randomly deformed
meshes(Graph (3b)) there is loss of optimal rate of the interpolant in addition to loss of accuracy in both norms
studied as well as in the seminorm H1.

Convergence studies performed with the refinement of type I curved domains obtained by approximating the
solution cos(

√
2πt) sin(πx) sin(πy) are illustrated in Figure (3c). The interpolant ui maintains optimal rate and

expected second order behavior is verified in L2, H1 also in the norm of maximum. For studies with meshes over
domain type II it follows that the interpolant exhibits suboptimal rate and the semi-norm of H1 is not shown to be
robust with the current mesh distortion, not having satisfactory behavior on more refined meshes.

6 Conclusions

We have presented in this work, so far, a methodology capable of generating approximations for the Lapla-
cian space operator associated with the acoustic wave equation. The associated stencils are obtained by using
independent monomials in the real variables x and y. Convergence studies on the norms in L2 and of the maxi-
mum showed robustness for the varied mesh types and domains, with expected rates obtained. The seminorm of
H1, on the other hand, proved unable to maintain expected rates for the type II curved domain. We are developing
the approximations associated with the elastic wave equation.
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