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Abstract. The bond strength between steel bars and concrete is one of the essential aspects of reinforced concrete 
structures and is generally affected by several factors. As a phenomenon influenced by many variables, it is 
challenging to establish how the steel-concrete adhesion can be described in the standards used for reinforced 
concrete design. This study used an experimental data set of 89 pull-out specimens to develop a support vector 
machine (SVM). The data used in the modeling was arranged as four input parameters: bar surface, bar diameter 
(ϕ), concrete compressive strength (fc) and the anchorage length (Ld). Several scientific studies on this property 
have been performed since the 1940s, among many other investigations in this field. Generally, these studies refer 
to bars with diameters greater than 12.0 mm. However, few studies have evaluated the performance of reinforcing 
bars with diameters smaller than 10.0 mm, which includes 5.0-, 6.3-, 8.0- and 9.5-mm diameters, usually used in 
reinforced concrete elements. This work uses SVM to analyze and build a prediction model for the steel-concrete 
bond and its potential to deal with experimental data. The root mean squared error (RMSE) found for the maximum 
applied load in the pull-out test was 1.305 kN and the R-squared was 0.95. Therefore, this study can conclude that 
the current model can satisfactorily predict the bond strength of thin bars. 
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1  Introduction 

Steel-concrete bonds are essential for the structural behavior of reinforced concrete structures and an 
extensive range of parameters can influence the characteristics of the steel-concrete interface [1]. Many authors 
have conducted experimental investigations for the most critical parameters influencing the bond. The bond 
characteristics are usually affected by the bar diameter, the anchorage length of bars, the concrete compressive 
strength, and the bar surface [2], [3]. As a phenomenon influenced by many variables, it is challenging to establish 
how the steel-concrete adhesion can be described in standards used for reinforced concrete design [4]. 

Several scientific studies on this property have been performed since the 1940s [5], [6], among many other 
studies in this field. Generally, these studies refer to bars with diameters greater than 12.0 mm [7], [8]. However, 
few researches have evaluated the performance of reinforcing bars with diameters smaller than 10.0 mm, which 
includes 5.0-, 6.3-, 8.0- and 9.5-mm diameters, generally used in reinforced concrete elements [9]. 

One of the most used tests to evaluate the steel-concrete bond is the pull-out test described in RILEM-CEB 
RC [10]. The pull-out test extracts a steel bar placed in the center of a cubic concrete specimen, as shown in Fig. 
1. The bond strength can be calculated with the pulling force measured at one end while the displacement is 
measured at the other end, as shown in Eq. (1): 
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where τ is the bond strength, P is the applied load, ϕ is the rebar diameter and Ld is the anchorage length.  
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Although Eq. (1) can be used to predict the value of the bar pull-out stress, the value of the load P is usually 
predicted by the pull-out test, with expensive destructive testing methods. 
 

 

  

Fig. 1: Pull-out test set-up [10] 
 

The size effect of rebars in the bond has been illustrated direct or indirectly by some researchers. Some of 
them discussed the issue of size effect on the steel-concrete bond, including the bar diameter and the anchored 
length on the pull-out test. The small number of scientific studies on the bond of thin bars cast doubts on the 
parameters used to calculate the anchorage length of these bars in reinforced concrete elements. 

Technological advancement usually allows engineering problems to be solved with machine learning, and its 
applications being good examples of fields explored with different expectations and realistic results. In general, 
artificial intelligence systems have shown their ability to solve real-life problems, particularly in nonlinear tasks 
[11]. 

Structural engineering has been a field of significant development by implementing and testing new 
computational models to predict the different properties of concrete mixtures. In the case of behavioral models, 
pattern recognition is relevant and computational intelligence methods can be used. Bio-inspired models can also 
be an excellent aid in designing structures for civil engineering [12]–[14]. The steel-concrete bond has also been 
an object of study using artificial intelligence in some works, but usually with rebars diameter greater than 10 mm 
[15]–[17] 

This project uses computational intelligence to analyze and develop a prediction model for the steel-concrete 
bond using a support vector machine method, emphasizing accuracy, efficiency, and the potential to deal with 
experimental data. This study contributes to a new model to determine the bond strength by establishing the 
maximum applied load using a support vector machine (SVM). 

2  Support Vector Machine 

Support vector machine is a popular learning algorithm that works in classification and regression problems, 
in addition to performing linear regression and classification [18]-[19]. To sort linearly separable data, there may 
be different hyperplanes that can separate the data (Fig. 2). The problem is finding a hyper-plane (margin) that 
could maximize the separation between two classes [20]. 
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Fig. 2: Nonlinear-to-linear model mapping [21] 

 
In SVM regression, the input is first mapped onto an m-dimensional feature space by fixed (nonlinear) 

mapping. A linear model is constructed in this feature space. The linear model in the feature space, f(x,w), can be 
expressed in mathematical notation as show in Eq (2): 
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where gj(x), j = 1, …, m is the set of nonlinear transformations; and b is the “bias” term. 

Data are often assumed to be mean zero and can, therefore, be obtained in the preprocessing stage, so that 
the bias term is dropped. Estimation quality is measured by the loss function L[y,f(x,ω)]. The SVM regression 
employs the following ε-insensitive loss function, proposed by Vapnik [22]: 
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Linear regression is performed in SVM regression in the high-dimension feature space by using insensitive 

loss and reduces model complexity by minimizing ||ω||².  
This paper used a support vector regressor as a non-parametric regression technique that relies solely on 

kernel functions. This technique builds a multidimensional hyper-plane space to separate a dataset into different 
classes. 

As the dataset is a multivariate supervised dataset, some of the kernels used for regression comparison could 
be linear, polynomial, or RBFs [23]. In this project, the GridsearchCV, a function which implements a score 
method whose parameters are optimized by cross-validated, is used to evaluate these possible kernelsThus, it is 
possible to assess the performance of these kernels and evaluate different parameters of ε, which are the penalty 
parameters for the error. 

For polynomial and RBF kernels, there is a γ parameter called the kernel coefficient. The best performance 
is evaluated based on the results of R-squared. Thus, it is possible to assess the best attained results of the 
implemented model using different kernels, ε values and γ parameters. 

3  Analysis and Results 

This work required the acquisition of reliable experimental data to determine the bond steel-concrete through 
computational intelligence. The database chosen was obtained from Carvalho et al. [4]. This database presents 89 
experimental tests. Four input parameters and one output parameter were used. The input parameters are as 
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follows: 

 Concrete compressive strength ( cf ); 

 Bar diameter ( ); 

 Anchorage length ( dL ); 

 The surface geometry of ribbed steel bars. 

The output parameter is the maximum applied load (in kN). 
In order to assess data dispersion, the data range is shown in Table 1. 

 
Table 1: Data Range 

Model attributes 
Values 

(Minimum) (Maximum) 

Compressive strength of concrete (MPa) 23 47 

Diameter (mm) 6 10 

Anchorage length (mm) 30 100 

Maximum applied load (kN) 2.51 36.45 

 
The types of surface geometry of steel bars present in this study are ribbed (type 1) and notched (type 2), as 

show in Fig. 3. 
 

  
Fig. 3: Steel types of bars: (a) ribbed and (b) notched [24] 

 
The presented data provided by Carvalho et al. [4] are consolidated and distributed adequately for input and 

output variables. Still, it was necessary to implement the feature scaling technique to effectively standardize the 
data used. 

The test results (output parameter) were statistically evaluated before entering the model, since the results 
obtained in adherence tests usually present high coefficients of variation. Because of this behavior, output values 
(maximum pull-out force) were selected considering at least five repetitions for each sample. The mean, standard 
deviation, and coefficient of variation for each sample were also evaluated, and the values considered outliers were 
removed. This statistical evaluation was done in order to improve the convergence of the computational model. 

For the SVM learning model, the best parameters to be used in the kernel were defined. As GridsearchCV 
was used to evaluate possible kernels, linear, polynomial and RBFs could be applied. The intention was to evaluate 
the performance of these kernels in the dataset presented and estimate different parameters of ε, which are the 
penalty parameters for the error. For polynomial and RBF kernels, there is also a kernel coefficient called the γ 
parameter. In such cases, there is a need to search these parameters to find the relationships between them and the 
best metrics to predict relevant results for the database optimally. 
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By applying linear, polynomial and RBFs, it was found that the RBF was the best SVM kernel, i.e., which 
best predicts the results for the data presented. The best performance is evaluated based on the results of R². Thus, 
it is possible to evaluate the best performance of the model over different kernels, ε values and γ parameters. Table 
2 presents the range of parameters used in the GridsearchCV and the best parameters used in the experiments for 
the SVM algorithm. 
 

Table 2: Range of parameters used and best parameters for the SVM experiments 

Parameter Range Setting 
C 10-500 500 
Degree 3-5 3 
Epsilon 0.1 0.1 
Kernel RBF-Linear-Sigmoid RBF 

 
With the presented data analysis, the adequate architecture of the computational model was developed. Fig. 

4 shows the original and predicted values for the test data and Fig. 5 shows the predicted and original scatter values 
of bond strength test data for the proposed SVM model. The value found for R² is equal to 0.95 and the RMSE is 
equal to 1,305kN. These figures reveal that the model used presents excellent agreement and results. 
 

 

Fig. 4: Original versus obtained results for SVM. 
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Fig. 5: Scatter of predicted and training (original) experimental values of bond strength. 
 

The results obtained in this study are summarized in Table 3. 
 

Table 3: Obtained results for SVM. 

 
RMSE 
(kN) 

R² 

SVM 1.305 0.95 

4  Conclusions 

This work aimed to present the study of computational intelligence applied to define the bond strength from 
an original database obtained by Carvalho et al. [4]. A machine learning method, known as Support Vector 
Machine (SVM), is used to find the maximum applied load. Data pre-processing methods were also used to 
improve the results. 

The obtained results for best performance of the SVM are RMSE = 1.305kN and R² = 0.95. The 
computational intelligence model used is reliable to solve different complex problems, such as the prediction pull-
out load of thin bars in concrete specimens. These models can be used to solve a specific problem when a deviation 
in available data is expected and accepted and when a defined methodology is not available. Therefore, to predict 
the properties of concrete, such as a steel-concrete bond, with high reliability, conventional models can be replaced 
by computational intelligence models. 

At the end, the average errors found for the values predicted by the SVM and those predicted experimentally 
are highly consistent. Thus, the current study suggests an alternative approach to evaluating bond strength instead 
of expensive destructive testing methods. 
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