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Abstract. Reservoir geoengineering is usually faced with large-scale optimization problems under uncertainty 

arising as part of development planning of smart wells locations, performing separated, jointly, or simultaneously 

optimization of well locations and control rates of water injection and hydrocarbon productions. This paper 

performs a simultaneous optimization of well locations and production rates under geological uncertainty using 

Monte Carlo samples over geostatistical realizations. Those optimization problems are of mixed-integer type. 

Traditionally, they have been solved by performing projections between real and integer variables using different 

strategies, Whitney and Hill [7]. This work investigates the performance of DSPSA, a discrete version of SPSA, 

recently described in Wang and Spall [13], and proposes a discrete variant to be applied in mixed-integer problems 

where all control variables are ceiling round, taking advantage of practical field implementations. One-sided 

deterministic constraints are imposed to reduce search space. For more general one-sided stochastic non-linear 

constraints, see Fonseca [3] and Fonseca et al. [9]. In the class of reservoir problem solved in this paper, functional 

and constraints derivatives a never available, mainly because industry solves the reservoir simulation problem 

using commercial software as a black box. Additional metaheuristics are used to construct the discrete version of 

DSPSA. This work makes a preliminary comparison between the new discrete version, DSPSA-R, with SPSA-Z, 

the mixed-integer version of SPSA in Fonseca [3]. 
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1  Introduction 

The research to be described proposes an optimization methodology for optimal reservoir development 

management and planning of smart wells locations and production optimization under geostatistical uncertainty, 

performing a simultaneous optimization of well locations and production rates in a water injection petroleum 

reservoir exploitation. The simultaneous strategy, first proposed in Fonseca [3], efficiently opposes to industry and 

academic conventional joint strategy that uses cycles of wells locations optimization followed by rate optimization, 

Shirangi [4]. 

Simulation-optimization techniques are used together with gradient-free optimization algorithms that 

execute high fidelity reservoir physics from any commercial reservoir simulator. Traditional surrogate-based 

objective functions techniques suffer from the well-known problems of accuracy, efficiency, and robustness 

whenever trying to estimate approximate derivatives of surrogate models. Instead, direct function measurements 

are used to make direct stochastic approximations of gradient functions.   

SPSA - simultaneous approximation stochastic algorithm - is especially efficient in high-dimensional 

problems in terms of providing a good solution for a relatively small number of objective function evaluations, He 

et al. [1] and Spall [2]. This is confirmed by numerical experiments in Fonseca [3]. SPSA is an appropriate 

algorithm for use in random noise environments, as are reservoir geostatistical descriptions combined with 

stochastic direct measurements. These environments are typical in reservoir closed-loop control.  

Shirangi [4] remarked a tendency to perform joint optimization of well locations and control. Because studies 
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have reported that a sequential approach, i.e., optimizing first well locations then well rates, often yields suboptimal 

solutions compared to joint optimization. To perform the simultaneous or joint optimization, usually, production 

rates are treated as continuous variables and well locations as integer variables. In other words, this problem 

belongs to the mixed-integer optimization class problem. For such problems, neither combinatory methods nor 

classic methods of optimization with gradients and Hessians are suitable.  

Whereas SPSA was developed for continuous optimization problems, to solve discrete optimization 

problems, several adapted versions have been proposed. Fu and Hill [5] applied SPSA over discrete systems, where 

integer variables were projected in the continuous domain. Gerencser and Hill [6] show a discrete SPSA version 

defining the gain parameter, 𝑎, as a fixed gain parameter instead of the original sequence 𝑎𝑘 .  

Whitney and Hill [7] solved constrained optimization problems over discrete sets via SPSA. Within a domain 

of interest, treated as a grid of points with discrete-value coordinates, they proposed three discrete methods that 

differed among themselves by the way control variables are updated, as shown further up. Other forms of 

projection techniques can be seen in Brooks [8], where the author tested six SPSA versions to solve discrete 

resource allocation problems. These versions were different from each other in aspects related to how to obtain 

stochastic gradient 𝑔̂(𝜃𝑘), update control variable, 𝜃𝑘+1 and parameters 𝑐𝑘 and 𝑎𝑘.   

We revisit the simultaneous well placement and production rates optimization problem solved in Fonseca 

[9], where integer part of control variables are wells positions, supposed to be block-cantered, and the continuous 

part of control variables are injection and production rates. Applications in that work were made with a unique 

cycle after projections, Whitney and Hill [7], of integer variables in the continuous field, immediately before 

calling the black-oil model simulator, commercial software IMEX [10]. 

This work makes a preliminary comparison between the new discrete version, DSPSA-R, with SPSA-Z, the 

mixed-integer version of SPSA in Fonseca [3], taking advantage of practical constraints on the field 

implementation of optimization output. The methodology is fully coded in MATLAB [11]. 

2  Methodology 

Algorithms that make stochastic approximations (SA) are suitable for problems that consider the inherent 

uncertainties of real issues. SPSA is an algorithm of stochastic nature that uses only two objective function 

measurements by iteration to make a stochastic gradient approximation of the objective function. Additionally, its 

performance is independent of the control variable’s number. This characteristic allows a significant reduction in 

the optimization cost, mainly in problems with a high number of variables. Applications of this algorithm with 

hundreds or even thousands of control variables are shown in Spall [12], Fonseca [3]. The implementation of SPSA 

for unconstrained optimization, in its basic format, is given in Spall [2] and Spall [12].  We are aware of the relative 

efficiency of solvers that uses derivatives and adjoints of a smooth and convex objective function. However, the 

general set of problems solved here are neither smooth nor convex.  

2.1 SPSA basic format for unconstrained and continuous optimization, Spall [2] 

Step 1   Initialization and coefficient selection.  Set counter index 𝑘 = 0. Pick initial guess 𝜃0 ∈ 𝐺 and 

nonnegative coefficients  𝑎, 𝑐, 𝐴, 𝛼, and 𝛾. Usually,  𝛼 = 0.602 and 𝛾 = 0.101; 𝑎, 𝑐, and 𝐴 may be determined 

based on the practical guidelines given in Spall (2003). 

Step 2   Generation of simultaneous perturbation vector. Generate by Monte Carlo method a 𝑝-dimensional 

random perturbation vector using a Bernoulli ±1 distribution with probability 1/2 for each  ±1 outcome. 

Step 3   Objective function evaluations.  Obtain two objective function measurements 𝑦(𝜃𝑘 + 𝑐𝑘𝛥𝑘)  and  

𝑦(𝜃𝑘 − 𝑐𝑘𝛥𝑘). 

Step 4   Gradient Approximation.  Generate the SP approximation to the unknown gradient according to eq. 

(1)   
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Average several gradients estimations at 𝜃𝑘, if asked by the user. Benefits will be especially apparent if noise 

effects are relatively large. 



Haniel F. A. Belo1, Liliane A. Fonseca1, Ézio R. Araújo 

CILAMCE-PANACM-2021 

Proceedings of the joint XLII Ibero-Latin-American Congress on Computational Methods in Engineering and 

III Pan-American Congress on Computational Mechanics, ABMEC-IACM  
Rio de Janeiro, Brazil, November 9-12, 2021 

Step 5   Update 𝜽 estimate.  Update 𝜃𝑘 through stochastic approximation equation, 

 𝜃𝑘+1 = 𝜃𝑘 − 𝑎𝑘𝑔̂(𝜃𝑘). (2) 

Then check if 𝜃𝑘+1 is in the feasible domain. 

Step 6   Iteration or termination.  Return to step 1 with 𝑘 + 1  replacing 𝑘. Terminate the algorithm if there 

is little change in several successive iterates or if the maximum allowable number of iterations has been reached. 

2.2 SPSA versions with projection techniques. 

Whitney and Hill [7] proposed three discrete methods to estimate 𝜃𝑘+1, to deal with continuous variables in 

SPSA over discrete sets. 

Method 1: 𝜃𝑘+1 = 𝜃𝑘 − 𝑎 ∙ 𝑟𝑜𝑢𝑛𝑑(𝑔̂𝑘(𝜃𝑘)). Upon convergence, the final values of 𝜃 should be the next 

integer, given by 𝜃𝑓𝑖𝑛𝑎𝑙 = 𝑟𝑜𝑢𝑛𝑑(𝜃𝑘). 

Method 2: 𝜃𝑘+1 is obtained in a similar manner of the first method, except that the constant gain, 𝑎, is 

included in the rounding operation: 𝜃𝑘+1 = 𝜃𝑘 − 𝑟𝑜𝑢𝑛𝑑(𝑎 ∙ 𝑔̂𝑘(𝜃𝑘)). In this case, upon convergence, 𝜃 values are 

already discrete. 

Method 3: at each iteration, the entire parameter estimate is rounded either up or down to the nearest discrete 

value, i.e., 𝜃𝑘+1 = 𝑟𝑜𝑢𝑛𝑑(𝜃𝑘 −  𝑎 ∙ 𝑔̂𝑘(𝜃𝑘)) . According to the authors, this method had achieved better results in 

terms of efficiency and convergence. 

2.3  DSPSA, the discrete SPSA.  

Wang and Spall [13] described the DSPSA algorithm, for a 𝜃 𝑝-dimensional vector, with 𝑝 = 1,2,3, …. They 

considered objective function noise measurements, 𝑦 = 𝐿 + 𝜀, where 𝐿: ℤ𝑝 → ℝ and 𝜀 is noise. With the following 

steps: 

Step 1   Initialization and coefficient selection.  Set counter index 𝑘 = 0. Pick initial guess 𝜃0 . 

Step 2   Generation of simultaneous perturbation vector. Generate by Monte Carlo a 𝑝-dimensional random 

perturbation vector using a Bernoulli ±1 distribution with probability 1/2 for each ±1 outcome. ∆𝒌=

[∆𝑘1, ∆𝑘2, … , ∆𝑘1𝑝]
𝑇
. 

Step 3   Domain perturbation Consider 𝝅(𝜃𝑘) is the middle point of a unitary hypercube, and ⌊𝜃𝑘⌋ =

[⌊𝜃𝑘1⌋, … ⌊𝜃𝑘𝑝⌋]
𝑇
 , then calculate  

 𝝅(𝜃𝑘) = ⌊𝜃𝑘⌋ + 1𝑝 2⁄  , (3) 

where 1𝑝 is a 𝑝-dimensional vector with all components being unity, and ⌊ ⌋ is a floor function operator. 

Step 4   Objective function measurements and gradient Approximation.  Evaluate 𝑦 at 𝝅(𝜃𝑘) = ⌊𝜃𝑘⌋ +

∆𝑘 2⁄  and 𝝅(𝜃𝑘) = ⌊𝜃𝑘⌋ − ∆𝑘 2⁄ , and estimate 𝑔̂(𝜃𝑘).  

 𝑔̂𝑘,𝑙(𝜃𝑘) = [𝑦(𝝅(𝜃𝑘) +
1

2
𝛥𝑘) − 𝑦(𝝅(𝜃𝑘) −

1

2
𝛥𝑘)] ∆𝑘

−1. (4) 

Step 5   Update 𝜽 estimate.  Update 𝜃𝑘 through stochastic approximation equation, eq. (5) 

  𝜃𝑘+1 = 𝜃𝑘 − 𝑎𝑘𝑔̂(𝜃𝑘).  (5) 

Step 6   Iteration or termination.  Return to step 1 with 𝑘 + 1  replacing 𝑘. After the maximum number of 

allowed iterations, 𝑁, set the approximated optimal solution. 

 

One should observe in this algorithm that control variables are intrinsically reals. Because of that, in step 3, 

they are truncated. But at the updating step, 𝜃𝑘+1 is a continuous variable. It should observe that DPSA does not 

use 𝑐𝑘 parameter to perturb 𝜃𝑘 in the domain, instead, perturbations are centered in ⌊𝜃𝑘⌋ by ± 1 2⁄ . 

In this work, we introduce a DSPSA version called DPSA-R, where the letter “R” refers to rounding the 

updated estimate. Because both types of variables rates and well locations were treated as integers, only the product 

𝑎𝑘𝑔̂(𝜃𝑘) is in the real domain. This has been solved by rounding the estimate updated in step 5, using eq. (6) 

 𝜃𝑘+1 = 𝑐𝑒𝑖𝑙[𝜃𝑘 − 𝑎𝑘ĝ(𝜃𝑘)]. (6) 
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3  Discussion and Results 

3.1 Reservoir under geostatistical uncertainties 

The methodology is applied on a stochastic version of a 2D-synthetic and deterministic oil reservoir model,  

Case 1 in Oliveira [14]. The reservoir was exploited with two producers, P1 and P2, and a water injector, I-1, for 

16 years. 

Figure 1 gives a view of the stochastic version, named Case 1S, for which a set of 1000 reservoir geostatistical 

realizations in the software Builder [15]. Permeability realizations were generated conditioned to hard data of the 

three wells. Both well producers can produce individually up to 12 m³/d of liquids. However, to explore the 

optimization algorithm to its full potential, the capacity of processing liquids in the production station was limited 

to 16 m³/d. The reservoir was modeled with a 51×51×1 grid with cells of 10×10×4 m comprising 2601 cells. All 

other reservoir properties are assumed to be deterministic. See Oliveira [14] and Fonseca [3] for a complete 

reservoir description. 

 

Figure 1. Realization number 10 of horizontal permeability generated.  

3.2 Dynamic allocation of the production rates 

Under the production and economics aspects, the objective function for optimization problems of exploitation 

in oil reservoirs is the Net Present Value (NPV). An economical package developed at Oliveira [14] was used to 

compute the NPV. The control variables are the dimensionless ratios given by 

 𝑥𝑝,𝑡 =
𝑞𝑝,𝑡

∑ 𝑞𝑝,𝑡𝑝∈𝑃
, 𝑡 = 1 … 𝑛𝑡, (7) 

where 𝑞𝑝,𝑡 is the rate (m³/d) of the well p  in the interval of time t , tn  is the number of total time intervals of the 

production operation, and 
,p p t

q  is the total rates of the wells in the interval t , the same as the capacity of the 

production station. The control variables are the rates of well P1 during exploitation time, as the P2 well rates are 
secondary variables obtained through subtraction of the P1 well rate from the total rate production station. Which 
is put to produce at its full capacity. Upper 𝑥𝑝,𝑡

𝑢  and lower 𝑥𝑝,𝑡
𝑙  bounds constraints are imposed to production wells, 

 𝑥𝑝,𝑡
ℓ ≤ 𝑥𝑝,𝑡 ≤ 𝑥𝑝,𝑡

𝑢 , (8) 

where 
, 0.25p tx =  and 

, 0.75
u

p tx =  in the current example. As the optimization process takes place, the set consisting 

of the NPV of each simulated realization is used to compute the Expected Net Present Value (ENPV) and other 
desired summary statistics using the Monte Carlo method. Simulations of each reservoir realizations can be 
distributed across cluster processors to reduce the computational cost. The standard problem of stochastic 
optimization is established as in April et al. [16]: 

 𝑚𝑎𝑥
𝑥𝑝,𝑡∈𝑅𝑛

𝐸𝑁𝑃𝑉(𝑥𝑝,𝑡 , 𝑢). (9) 

3.3 Simultaneous optimization of well placement and production rate 

In this section, it is performed a joint optimization of well locations and production rates. Figure 2 shows the 

reservoir grid, described by Cartesian coordinates, X and Y. During the optimization process, wells can only be 

located at a block center. Usually, a well should be located at preferential regions, selected by geoengineers. 
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Boundaries of the feasible regions for each well can be seen in Fig. 2; also, it shows the arbitrary selected initial 

position for the injector and producers. 

To obtain the maximum NPV which can occur during the time horizon of production, Bangerth et al. [17] 

divided the total exploitation time into sub-periods 𝑇1  <   𝑇2  <   𝑇3  < . . . <   𝑇𝑓. Where 𝑇𝑓 is the final time of 

exploitation and performed a set of optimization problems equal to the number of sub-periods. In this study, the 

chosen objective function is the maximum ENPV during the time of exploitation. This maximum is obtained by 

solving a unique optimization problem in which the series of Bangerth’s sub-problems was eliminated. Also, time 

was implicitly included as a control variable. Details of this technique were shown in Fonseca [3]. 

Because the locations of the three wells were simultaneously optimized, it was not possible to draw the 

multidimensional ENPV surface. Figure 2(a) gives us an idea of this problem’s complexity, where two wells were 

fixed at their original positions, and the third one was moved to all feasible locations. Results of these simulations 

are depicted in Fig. 2(b), which shows the ENPV surface and the standard deviation, STD illustrated in Fig. 2(c). 

One should observe that possible feasible regions (low risk) are disconnected.  

a  

(a)         (b)     (c) 

Figure 2. Initial positions of the wells and their limit borders of locations, (a). Response surfaces with three 

geostatistical realizations of ENPV (b) and (c) of the STD, obtained by changing the positions of one well at a 

time along with coordinates X and Y. 

Table 1 shows some results for this application, where T1 and T2 are P1 rates for two control steps. Run (1) 

considers all wells fixed on their original positions to have a ENPV reference value. Except for runs (4) which 

started with rates T1 and T2 equal to 50%, all tests started with 25% of production station rate for well P1, for both 

steps of control. Moreover, Tab. 1 shows the final well positions and final producer P1 rates, at maximum ENPV, 

achieved at 𝑘-th iteration. Table 2 shows us the gain parameters corresponding to runs in Tab. 1. 

Table 1. Results of mixed-integer optimization using three geostatistical realizations. The first run optimized 

only production rates with wells in original locations. 

 

Run 

# 

Algorithm 

version 

 
ENPV₀ 

(E4) 

ENPV 

(maximum) 

(E4) 

 P1 P2 I  Rate (%) 

N     k X Y X Y X Y T1 T2 

(1) SPSA 200 37.28 40.87 65 51 51 1 51 26 1 54.0 25.0 

(2) SPSA-Z 390 7.13 42.32 148 51 51 24 51 20 2 56.8 67.6 

(3) SPSA-Z 712 6.38 41.74 58 51 51 24 51 22 3 54.1 72.8 

(4) SPSA- Z 1000 5.52 42.06 128 49 51 24 51 18 6 75.0 42.1 

(5) DSPSA-R 300 7.13 42.59 52 46 51 24 51 19 3 65.0 61.0 

(6) DSPSA-R 270 7.13 42.62 112 48 51 24 51 20 1 75.0 75.0 

(7) DSPSA-R 230 7.13 42.39 33 46 51 22 51 22 3 55.0 46.0 
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Table 2. Gain parameters of algorithms SPSA and DSPSA used in the runs.  

 

 

 

 

 

 

 

 

 

 

Figure 3 compares ENPV curves along with iterations for the best runs of SPSA-Z and DPSA-R. In Tab. 1, 

they correspond to runs #2 and #6, respectively. Again, we can see that DPSA-R has achieved the best value of 

ENPV at iteration 112 and is faster than SPSA-Z. 

 

Figure 3. ENPV versus iterations for SPSA-Z and DPSA-R best runs of simultaneous optimization of production 

rates and well locations. Curves correspond to runs #2 and #6 in Tab. 1, respectively. 

Figure 4 shows well positions at the highest ENPV values during optimization. Figures were numbered 

according to the cases in Tab.1, which offers a summary for the simultaneous optimization with three realizations. 

Well settings in (2) and (3) of  Fig. 5 show that simultaneous optimization of well placement and rates production 

has modified the original positions of wells producers.  

Additionally, the optimized well configurations show a tendency of producers P1 and P2 be located on the 

right-bottom of their feasible region. Fonseca et al. [9] had studied this case with 3, 10, 30, 50 realizations, and the 

results showed the same tendency for any number of realizations.  

 

Figure 4. Wells arrangement after optimization. (1) original positions, (2) and (3) optimization with SPSA-Z 

version, and initial rates 25% and 50%, respectively. (6) the best optimization with DPSA-R version and initial 

rates at 25%. 

  
Version  

Gain Parameters  
Run 𝑁 𝑐 𝑎 𝐴 

(1)  SPSA 200 4 0.02 10 

(2) SPSA-Z 1000 14 0.05 30 

(3) SPSA-Z 712 14 0.05 30 

(4) SPSA-Z 390 14 0.0844 30 

(5) DSPSA-R 300 - 0.005 30 

(6) DSPSA-R 270 - 0.01 30 

(7) DSPSA-R 230 - 0.003 30 
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4  Conclusions 

For the integer-mixed type of optimization, the literature used to perform two sequential cycles: one external 

cycle with respect to the integer variables and an internal cycle with respect to the continuous ones, or the reverse. 

This work shows a simultaneous optimization of well placement and production rates in a bidimensional petroleum 

reservoir. 

Comparing performances of SPSA-Z and DSPSA-R versions to solve the simultaneous optimization, results 

showed that both algorithms achieved similar well positions and ENPV values, but with DSPSA-R running faster. 

Relating to production rates, it was not possible to observe a tendency in their values for optimal values of 

ENPV, regardless of the kind of set, continuous or integer. We should investigate this fact more. 
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