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Abstract. The design of mooring systems is a complex and time-consuming task that must be thoroughly 

addressed in every Oil & Gas upstream project. Up to now, the task is performed mostly based on the expertise 

and engineering judgment of the analysts, with little to no optimization ever pursued. This article presents a method 

that employs the well-known ε-Constrained Differential Evolution algorithm to design the mooring system and 

makes use of Artificial Neural Networks to evaluate its performance, thus eliminating the constraints imposed by 

the limited capabilities of the human mind and providing feasible systems with reduced costs. 
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1  Introduction 

FPSOs (Floating Production Storage Offloading units) moored in deep water fields embody the current trend 

of the Oil and Gas industry in Brazil and many other regions around the world, with a recent spike in projects 

entailed by increased oil prices. The mooring systems of these units are sized to guarantee that their maximum 

offsets will not exceed the design conditions of the risers, the dynamic sections of pipelines that interconnect the 

floating units and the subsea wells, while also complying with the structural requirements presented in the rules of 

Classification Societies and regulations like ISO 19901-07 [1] and API RP 2SK [2]. 

The mooring system analyses in time-domain constitute one of the most complex, time-consuming, and 

computer-intensive tasks involved in the subsea layout definition for upstream projects. The input data is plenty 

and the conclusions, hard to draw from the torrents of raw data available from the simulations. The interplay 

between the many design variables of the problem is hard to grasp. Because of that, up to now, the design of the 

mooring systems has relied mostly on the expertise and engineering judgment of the analysts in charge of the 

projects, with little to no optimization ever performed.  

A different approach for the design and optimization of mooring systems is presented in this article. The 

method employs the well-known ε-Constrained Differential Evolution algorithm to optimize the mooring system 

and makes use of a metamodel (or surrogate model), by Artificial Neural Networks (ANNs), to evaluate the 

performance of the candidate solutions in extreme environmental conditions. The single objective of the algorithm 

is to minimize the cost of the mooring system and the constraints are basically related to the maximum offsets of 

the floating unit and maximum tensions on the mooring lines.  

The design of cost-effective mooring systems has already been formally described as an optimization problem 

in many previous works and the use of evolutionary algorithms to tackle the issue is not new [3 to 6]. These 

algorithms perform very well on a variety of problems but require a great number of candidate evaluations to 

achieve convergence. That being so, the methods adopted for estimating the performance of the candidate solutions 

varies in these works, with some being more precise than others and posing a clear trade-off between precision of 
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the results and the computational efforts required to deliver them. In this context, the use of metamodels (also 

known as surrogate models), to approximate the results from time-domain simulations, provides both reliable 

estimations and reduced processing times. We hope that these features will render the proposed method attractive 

as a design tool for the upstream projects still to come. 

This article is organized as follows: the mooring system optimization problem is defined, the design 

methodology is described together with the metamodel and the optimization algorithm, then the case of a typical 

spread-moored FPSO in the Pre-Salt area is discussed to demonstrate the auspicious results that were obtained.  

2  Mooring system optimization problem 

The mooring system optimization problem is defined as follows. The cost of the system installed offshore is 

the objective function to be minimized. The maximum tensions acting on the mooring lines, in line with ISO and 

API requirements, and the maximum FPSO offsets defined by the operator are taken as constraints. In addition, 

polyester segments should not touch the seabed. Therefore, the mooring system optimization problem addressed 

in this work takes the form: 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶𝐴𝑃𝐸𝑋(𝑥) (1) 

 

Subject to: 

 

max 𝑂𝑓𝑓𝑠𝑒𝑡

𝑀𝐴𝑂
≤ 1 (2) 

max 𝑇𝑡𝑜𝑝

𝑀𝐵𝑆
≤ SF (3) 

max 𝑇𝑏𝑜𝑡𝑡𝑜𝑚

𝑀𝐴𝐻𝑃
≤ SF (4) 

max 𝐿𝑠𝑒𝑎𝑏𝑒𝑑

𝐿𝑏𝑜𝑡𝑡𝑜𝑚 𝑐ℎ𝑎𝑖𝑛

≤ 1 (5) 

 

 

Where: 

x = mooring system configuration 

CAPEX = Capital Expenditure of the mooring system (cost of materials and installation)  

MAO = Maximum allowable Offset 

MBS = Minimum Breaking Strength (corroded) 

MAHP = Maximum Anchor Holding Power 

SF = safety factor, defined by ISO and API regulations 

Ttop = tension on the line at the FPSO fairlead level 

Tbottom = tension on the line at the mudline penetration point 

Lseabed = length of mooring line that lays on the seabed 

Lbottom chain = length of bottom chain 

 

The candidate solution x may comprise every design variable that define the mooring system, e.g., the number 

of lines, the azimuths, the radii and the pre-tension levels of each cluster as well as the composition of the lines, 

in terms of size and strength of materials and lengths of segments. In our case study, however, only number of 

lines, radii and pre-tension levels were controlled. Pre-tension was adjusted by changing the lengths of the top 

polyester segments, while all other segments were maintained fixed.  
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3  Design methodology 

3.1 Overview 

A number of works have already been published in this line of research, with different objective functions 

and different approaches to the evaluation of the candidate solutions. In Monteiro et al. [3], the Particle Swarm 

Optimization (PSO) algorithm was applied and the candidates were evaluated by fully coupled nonlinear time-

domain Finite Element simulations. The objective function is the maximization of the vessel offsets inside the 

feasibility limits of the riser system. In Carbono et al. [4], the Genetic Algorithm (GA) was used to minimize the 

vessel offsets, calculated by static analyses. Shafieefar and Rezvani [5] also used GA to minimize the vessel 

offsets, but evaluated the candidate solutions via time-domain analyses. Monteiro et al. [6] compared the 

performances of the PSO and DE algorithms applied to mooring optimization problems and concluded that DE 

presents faster convergence. In this study, the constrained problem was converted into an unconstrained problem 

by application of penalties in the objective function. Pina et al. [7] demonstrated that ANNs can approximate 

results from mooring analyses in time-domain with reasonable precision.  

Inspired by Garcia et al. [8], which used metamodels in constrained optimization problems, we employ the 

ε-Constrained Differential Evolution algorithm coupled with ANNs to optimize mooring systems. Each candidate 

solution is assessed in terms of violation of constraints by the ANNs, trained from a dataset comprising 3000 

random solutions evaluated by quasi-dynamic simulations. The algorithm evolution proceeds until no constraint 

violation is detected in the best individual of the generation and no additional decrease in the cost of the system is 

attained in a pre-defined number of generations. The best individual is then evaluated by fully coupled nonlinear 

time-domain Finite Element analyses to confirm its feasibility. 

3.2 Artificial Neural Networks 

ANNs have been studied since the 1940s and are one of the most widely known Artificial Intelligence 

techniques, in great part due to its flexibility and quality of estimations provided. ANNs are composed by 

processing units, the neurons, disposed in layers. Each neuron takes a linear combination of its weighted inputs 

and processes it via a user-defined activation function that may take many forms. The neurons of a layer are 

connected to all neurons of the previous and next layers. Besides the input and output layers, most applications are 

satisfied with one intermediate (or hidden) layer [11]. See Fig. 1. 

The computer is able to learn complex non-linear relationships between inputs and outputs by adjusting the 

weights of the net. To achieve this goal, it is necessary to feed the ANN with vast amounts of known input-output 

pairs, the training data. The predictions of the net are compared to the real outputs and the error is used, by means 

of gradient-based methods, to adjust the weights of the net in an iterative process known as back-propagation.  

 

 

 

 

Figure 1. Neural network with one hidden layer (left) and artificial neuron (right) 
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3.3 ε-Constrained Differential Evolution Algorithm 

The optimization algorithm used in this work was proposed by Takahama and Sakai [9]. Individuals are 

ranked according to the ε-comparison, a routine that compares the sets of values (f,φ) assigned to each individual 

in such a way that the minimization of the constraint violation φ precedes the minimization of the objective 

function f. The ε-level represents the maximum allowable constraint violation and is defined as a function of the 

number of generations, slowly decreasing to zero. The algorithm also employs gradient-based mutation and elitism 

to enhance feasibility of the population throughout the generations. The parameters that need to be set are the size 

of the population, the number of generations, the amplification factor F and the crossover rate CR. The pseudo-

code of the algorithm is presented below. 

 

Generate initial population 

Do 

  For each individual x in the population 

  Choose 3 individuals a, b and c from the population different from x 

  Set v = a + F.(b-c) 

  Define z by exponential crossover between x and v with probability CR 

  Gradient-based mutation of the new individual 

  Replace x with new individual based on ε-comparison 

  Set ε-level 

Until termination condition is achieved 

Figure 2. Pseudo-code of the ε-Constrained Differential Evolution algorithm 

In the exponential crossover, a point k is chosen from all dimensions of the vector x and is used as a starting 

point for the exchange of elements between vectors x and v. The elements from the vector x are replaced by 

elements from the vector v with an exponentially decreasing probability given by CR, thus defining the vector z. 

Gradient-based mutation is used as a local search operator to improve feasibility of the new individuals. It is 

applied over the vector z with a 1% probability if the parent vector x is not ε-feasible. The operator is applied up 

to 3 times or until z becomes ε-feasible. The increment to z, ∆z, and the mutated vector z’ are then given by: 

 

∆𝑧 =  −∇𝐶(𝑧)−1∆𝐶(𝑧) (6) 

𝑧′ =  𝑧 + ∆𝑧 (7) 

 

Where ∆𝐶(𝑧) = max 𝑖  (0, 𝑔𝑖(𝑧)) is a vector of constraint violations, with 𝑔𝑖(𝑧) representing each inequality 

constraint applicable to the problem, and ∇𝐶(𝑧)−1 is the pseudo-inverse of the gradient matrix, which is calculated 

by finite differences considering small perturbations over the vector z. 

4  Case Study 

4.1 Performance of the metamodel – ANN 

To gather the training data required by the ANN for our case study, candidate solutions were randomly 

generated within the bounds of the design variables and evaluated by time-domain analyses of the critical 

environmental conditions found for a base case system defined a priori. A total of 3000 candidates were evaluated 

and their results were assembled into a dataset, regardless of whether they fulfilled the design constraints given in 

(2) through (5).  

As is common practice, 70% of the set was used for the training set and 30% for the test set. Table 2 shows 

the Mean Absolute Error (MAE) and the Coefficient of Determination (R²) obtained after training the ANN for 

the maximum FPSO offsets and maximum tensions on the mooring lines, demonstrating that the results of the 

mooring analyses can be reliably estimated by surrogate models. 
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Table 2. Precision measures of the ANN predictions for the test set  

Variable MAE 1-R 

Offset/Max Offset 7.44E-02 2.38E-02 

Max Ttop/MBS 6.85E-02 1.61E-02 

Max Tbottom/MAHP 3.61E-02 1.92E-02 

Max Lseabed/Lbottom_chain 6.43E-02 4.50E-02 

 

Figure 3 shows the comparison of the real outputs in the dataset (y_real) to the estimations of the ANNs 

(y_hat). Only the maximum FPSO offset is presented here for brevity. Blue dots represent the training set and 

orange dots represent the test set. Very good agreement between predictions and real data was achieved. 

 

 

Figure 3. Comparison between maximum offsets calculated by FEM and estimations via metamodel 

4.2 Performance of the ε-Constrained DE  

The performance of the optimization algorithm was verified with some of the test functions given in the 

specialized literature [10]. Table 1 shows the comparison of the results obtained by our implementation and the 

minima of these functions. The size of the population, the number of generations, the amplification factor F and 

the crossover rate CR, were taken as 40, 1000, 0.7 and 0.9 respectively. 

Table 1. Performance of the optimization algorithm 

Test Function Minima ε-Constrained DE Difference (%) 

G01 -15.00000 -15.00000 0.00% 

G04 -30665.53867 -30665.53867 0.00% 

G06 -6961.81388 -6961.81388 0.00% 

G05 5126.49671 5127.97007 0.03% 

G03 -1.00050 -1.00000 0.05% 

G11 0.74990 0.75000 0.01% 

G15 961.71502 961.71517 0.00% 

4.3 Application to mooring system optimization 

The methodology was applied to the case of a typical VLCC-sized spread-moored FPSO in the Pre-Salt area, 
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offshore Brazil, in a water depth of 2000 m. The unit is provided with 4 mooring clusters, one in each corner of 

the hull, and 32 risers connected to the riser balcony on the portside of the unit. The mooring lines are composed 

of segments of 120 mm R4 studless chains and polyester ropes of SWL 1250 t. The adopted maximum allowable 

FPSO offset and tensions at top and bottom of the mooring lines are 164 m, 6000 kN and 5400 kN respectively. 

Applying the ε-Constrained DE algorithm to the problem and evaluating the candidate solutions via 

metamodels, a solution for the mooring system was found. Table 3 presents the best mooring system configuration 

found in 20 runs of the algorithm. Table 4 presents the performance of the best solution under 100-yr environmental 

conditions, calculated by fully coupled nonlinear time-domain Finite Element analyses.  

Table 3. Optimized mooring system configuration 

Mooring Cluster Number of Lines Radius/Depth Pre-Tension [kN] 

SE 4 1.02 2470 

NE 4 1.16 1300 

NW 4 1.11 2010 

SW 5 1.05 2500 

Table 4. Performance of the optimized system 

Mooring Cluster 
Max Top         

Tension [kN] 

Max Bottom    

Tension [kN] 

Maximum FPSO 

Offset [m] 

SE 4823 4065 

156 
NE 4660 3905 

NW 5087 4350 

SW 4793 3895 

 

Figure 4 shows the fitness and constraint violation φ of the best solution of each generation along 100 

generations of one run of the optimization algorithm. After finding a feasible region inside the search space, the 

fitness is improved, exactly as devised by the ε-Constrained DE algorithm.  

While human experience would steer the new design towards solutions that are similar to what has already 

been done in the past, the algorithm tests a great number of alternatives, gathering valuable information about the 

problem at each iteration, to finally yield solutions with noticeable reduction in costs. Table 5 shows the mean, 

best and worst solutions found in these runs in terms of fitness (CAPEX in USD), demonstrating that the 

methodology is both stable and robust. 

 

Figure 4. Optimization of the mooring system by the ε-Constrained DE algorithm 
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Table 5. Mean, best and worst solutions in 20 runs [CAPEX in MM USD] 

Mean Best Worst  Std 

56.43 52.10 60.25 2.72 

5  Conclusions 

The proposed methodology provides promising results, achieving a feasible solution with reduced cost in our 

case study. The ε-Constrained DE algorithm was devised for much more complex search spaces, therefore 

converges easily to feasible solutions with reduced objective function when applied to our problem. In addition, 

the gradient-based mutation routine handles feasibility issues very deftly.  

Once the ANN is trained, the generation of new solutions is a matter of a few hours, mostly spent on running 

time-domain analyses to confirm the feasibility of the solution found by the algorithm. Since the generation of 

data for the ANNs can be de-coupled from the critical path of new projects, we believe that our proposal offers 

many advantages for practical applications in the industry. The expansion of the training dataset to encompass 

different scenarios (water depths, vessel headings, number of risers, etc) has the potential to transform the 

methodology into a design tool that can be coupled to subsea arrangement optimization routines.  

In future works, we will study a method for identifying the critical environmental conditions of each 

candidate solution for the generation of the training dataset of the ANN, thus rendering the algorithm more precise. 

Data from fatigue analyses will also be incorporated to the problem, to enable a complete evaluation of the mooring 

system.  
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