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Abstract. Intelligent Tutor Systems, Serious Games, and Simulations are user interaction-based instructional
technologies capable of adapting to the needs of learners. Tracking and logging data from user interactions during
the execution of a task allow for learning assessment and visualization of learner performance, which, in turn,
allows for the identification of learner mistakes. Instructional tasks can be mapped as a graph, and paths represent
the ordered sequences of task activities. Mining path patterns seek similar strategies and anomalous behaviors of
learners in performing the task. In this paper, graph similarity methods are applied to clustering tasks performed
in a virtual training system. Feasible paths on the graph represent the expected sequences for task execution, and
errors are deviations from them. Sequences of activities performed by the learners correspond to free walks on the
graph. Through task rules and reliability analysis, errors in learner walks were extracted and represented by vectors
and then clustered in error patterns. A meta clustering analysis of error pattern-based clusterings and similarities
clusterings reveals which of the former are closest to the error patterns. Based on the findings achieved, in future
work, a new similarity method that is sensitive to error patterns will be proposed.
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1 Introduction

The features of interaction and adaptation to learners’ needs found in many instructional technologies, such as
intelligent tutoring systems, serious games, and simulations, are critical to the effectiveness of the learning process
Sottilare2013. In this context, assessment and feedback on learner knowledge states depend on tracking and
recording interaction data during the execution of an instructional task [1]. The learners’ knowledge state is used
to design instruction, for example, recommending reinforcement of specific activities and promoting correction of
mistakes made [2]. The increasing use of these ubiquitous and pervasive instructional technologies, followed by
the power of telemetry and interaction data storage, is driving research into the analysis of training and education
data. Data mining techniques have been applied to both categorization and inference of learning models in virtual
training systems [3]. Among these techniques, extracting similar patterns through clustering methods plays a key
role in analyzing and visualizing training and education data [4]. Categorizing learners according to their task
performance levels is the first step towards adapting the learning process to learner’s needs. Taken an instructional
task with N activities as a graph, called a task graph, whose vertices are the activities and directed edges map
all feasible connections. Tracking a learner’s performance corresponds to trace a walk in the task graph. Mining
graph patterns can reveal both common strategies and anomalous behavior in the execution of the task [5]. An
anomalous behavior, here identified to specific types of errors, is a deviation from the expected paths (Fig. 1).
Examples of deviations are the errors in the task execution, such as omission, repetition, the inclusion of activities,
an incomplete task, an inappropriate sequence of time or order [6].

This work aims is to evaluate different similarity-based clusterings of learners’ walks on a task graph applied
to the interaction data of professional electricians during the execution of the task named pedestal insulator re-
placement in a virtual training system for critical activities in electrical substations [7]. In particular, it seeks to
identify which of those clusterings are closest to the patterns of errors committed by the learners. Approximating
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Figure 1. (a) A graph G. (b) A path graph PG. (c) A walk WG in G.

similarity to the error patterns can reveal potential graph similarity measures that are topologically sensitive to the
path deviations. In the next section, graphs similarity measures used in this work are presented. In the Methods
and Materials section, methodological aspects of modeling of error patterns, similarity calculations and clustering
methods and validation are exposed. Results are then discussed.

2 Graphs and graph similarities

A graph is a mathematical abstraction of entities and their relationships. A graph G(V,E ) is defined by a set
of N = |V | vertices V = {V1, ..., VN} and a set of edges E = {E1, ...,EM}, M = |E |. An edge Ek = E (Vi, Vj)
is a connection, or adjacency, i∼j between Vi e Vj . The AG is the adjacency matrix of G, where Ai,j = 1, if i∼j,
and 0, otherwise. The degree dgi of the vertex i is the number of edge connections to i. Therefore, the matrix DG

of the vertices degree is a diagonal matrix where Di,i = dgi. Furthermore, the Lapalacian Matrix LG = DG−AG

is defined from AG and DG is defined . A walk WG in G is a sequence of connected vertices V and a simple path
PG in G is a sequence of not repeated connected vertices of G [8].

Graph applications such as routing and sequencing problems, anomaly detection in networks, pattern behavior
analysis, among others can be addressed as general graph-based pattern recognition problem [9] [10]. Thus, given
G and G′, two graphs, a similarity measure Sim(G,G′) may be defined as Simd(G,G′) = 1

1+d(G,G′) , where
d(G,G′) is the distance, or dissimilarity, between G and G′ and Sim(G,G′) ∈ [0, 1]. As with the G graph, the
similarity of paths and walks are defined directly. For instance, given an instructional task, similar paths indicate a
pattern in the execution of the task. Let P = {Pi} be a set of paths over the graph G. The similarity between two
paths i and j could be defined from a distance function d(Pi, Pj). Paths in P are grouped in k categories according
to the similarity index from a based-distance similarity matrix Sdi,j = Simd(Pi, Pj). The groups formed must
show high similarity between paths in the same group and low similarity between different groups. Representing
expected patterns are graph paths ones should ask how similar a user’s execution and an optimal performance
of activities . The distance functions summarized in Table 1 are available in NetComp [11] library designed to
compute the similarity between graphs, which runs with another library for graph handling, called Networkx [12],
both to Python.

Table 1. Graph Distances

Distance Formulation Inputs Sensivity

λM dλM
(G,G′) =

(∑k
i=1(λMi − λM ′ i)

p
) 1

p

(1) MG e MG′ , M = A or M = L Global/Local

GED dGED(G,G′) = ∥A−A′∥ =
∑n

i,j |Ai,j −A′
i,j | (2) AG e AG′ Local

V EO dV EO(G,G′) = 2 |VG∩VG′ |+|EG∩VG′ |
|VG|+|VG′ |+|EG|+|EG′ | (3) G, G′ e G ∩G′ Local

δ − con dδ−con(G,G′) =
(∑

(
√
Sij +

√
S′
ij)

) 1
2

(4) S = [I + ϵD − ϵA]−1 (5) Global/Local

Resistance dNRes(G,G′) =
(∑k

i=1(R−R′)p
) 1

p

(6) R = diag(L†)[1]T+[1]diag(L†)T+2L† (7) Global

Netsimile dNetsim(G,G′) =
∑ |s−s′|

s+s′ (8) s = signature vector of G Local

Different distance settings can be used depending on whether the goals of the analysis are sensitive (column
Sensitivity in Table 1) to local features, such as detecting anomalies in connections, or global features, such as
identifying communities between entities in the graph [13]. The NetComp library supports different similarity
methods divided into spectral, matrix, or vector distances:
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1. Spectral or λ distances [14] are based on evaluating the eigenvalues of the adjacency, laplacian, or normalized
laplacian matrices of graphs . The spectra of a matrix M is the ordered sequence of its eigenvalues λM

i . Let
λM
i and λM ′

i , with i = 1, 2, ..., n be the sequence of the eigenvectors of the matrix M and M ′ of the graphs
G and G′, respectively. Spectral distances in eq. 1 are sensitive to both global or local divergences between
graphs.

2. The matrix-based graph edit distance [15] is calculated from the number of operations required to transform
G into G′ with minimal cost. Edit operations on graphs include deleting a vertex or edge or add a vertex or
edge. The distance in eq. 2 is defined as the difference between the adjacency matrices A and A′ of graphs
G and G′, respectively.

3. The matrix-based vertex-edge overlap distance [16] is calculated from the ratio of the quantity of shared
vertices and edges to the sum of vertices and edges (eq. 3) .

4. The DeltaCon0 [17] is an algorithm that compares affinities between vertices. The similarity between two
graphs G and G′ is calculated from the equation (eq. 4), where S and S′ are the vertex affinity matrices
between the G and G′, D is the diagonal degree matrix of the vertices and A is the adjacency matrix.
The columns of the S matrix contain the affinity vector si of vertex i which is the solution of eq. 5. The
value of ϵ is a small constant associated with the neighborhood of the vertices and ei is the vector whose
component i = 1, and 0 otherwise.The equation 5 comes from the Fast Belief Propagation method that
models information diffusion in a graph.

5. The normalized resistance distance in eq. 6 are inspired by the information diffusion across the graph. The
resistance of a graph is calculated based on the analogy with an electric circuit where the edges between two
vertices Vi and Vj represent resistors with resistance 1

wij
[18]. The normalized resistance distance between

two graphs G and G′ is given by eq. 7, where diag(L†) is the diagonal matrix of L†, the generalized inverse
of the Laplacian matrix and [1] is the matrix with all components equal to 1.

6. Vector distances like the NetSimile (eq. 8) capture the differences between two graphs through their signa-
tures vectors of the statistical measurements of the graph vertices and edges [19] based on characteristics
of each vertex with respect to its neighborhood (egonet features) such as the quantity and average degree of
neighboring vertices.

3 Methods and materials

The analysis shown in the Figure 2 have four phases: first, modeling data in a task graph, learner’s walks,
and feasible paths; after that, define similarities and error pattern for learners’ walks; then, clustering learner’s
walks according to (a) the walks similarities and (b) the error patterns; and in the last, apply meta clustering
analysis to identify similarities clusterings that are closest to the error pattern clustering. In this work, graph
generation and manipulation use the Networkx package [12], and similarity calculations are carried out from the
Netcomp library [11], both for Python. The application of the k-means method, silhouette coefficient calculation,
and cluster visualization was achieved from its implementation in the Scikit-learn library [20] also for Python. The
application context of this work is a virtual training system that reproduces an electrical substation in which users
can interact with objects in the scene through a 3D immersion headset and joystick controls. Developed using
the Unreal engine, the virtual environment supports a guided training of a twenty-activity task, named pedestal
insulator replacement [7]. The interaction data used in this work refers to the 22 training sessions available in the
system’s database. The logs contain information about the type, time, and order of the performed activities in each
session.

Figure 2. Workflow for meta clustering analysis

Data modeling Data modeling begins from a given task vector V with N activity entries Vj , j = 1, · · · , N . On
one hand, the rules for executing the activities are order constraints and define X feasible paths P = {Px} =
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Px(VPx
,EPx

) = {VPx1, · · · , VPxN}, with VPx i ̸= VPx j , ∀x ∈ X which are deduced from task rules. The paths

union results in the directed task graph GT = (VG,EG) =
⋃X

i=1 Px, where VG = VP and EG =
⋃X

i=1 EPx .
Rigorously, the task graph is a unweighted multidigraph because their vertices support two directed edges. In the
other hand, the sequences performed by the L learners are free walks {Wℓ} in the task graph, ℓ = 1, · · · , L. Free
walk means that an edge of some walk might not have the corresponding edge in the task graph. The order of
activity performed by the ℓ-th learner corresponding to the order of the vertices in Wℓ = {VWℓ,1

, · · · , VWℓ,R
},

where R is the total of concluded activities. Besides that, it is assumed that Wℓ is embedded in GT such that
|VPx | = |VWℓ

|, ∀ℓ, x. In this way, a W × P comparison concerns only to difference among their directed edges.
From [6], the errors made by professional workers in live-line maintenance were identified and mapped for

every Wℓ. The error vectors entries are components signal of the occurrence of six types of errors in the execution
of the task activities: improper timing (e1), repetition (e2), inclusion (e3), inversion (e4), incompleteness (e5),
omission (e6). The error weight vector {ei} = {i}, i = 1, 2, · · · , 6 and a function ϕ(Vℓj) = e⃗′, where the j-th
position of e⃗ = i whether error ei affects activity Vj performed by learner ℓ, and 0, otherwise. For each learner ℓ
the error assignment leads to a learner error matrix Eℓ|e|×|V | = [Eℓ(ei,Vj)] (eq. 9), where Eℓ(e⃗,Vj) = ϕ(Vℓj)

Eℓ =


Eℓ(e1,V1) Eℓ(e1,V2) · · · Eℓ(e1,VN )

Eℓ(e2,V1) Eℓ(e2,V2) · · · Eℓ(e2,VN)

...
...

. . .
...

Eℓ(e6,V1) Eℓ(e6,V2) · · · Eℓ(e6,VN)

 (9)

Matrix Eℓ|e|×|V | can be reshaped into a row vector with transpose columns Eℓ(e,Vj)] (eq. 10):

Eℓ1×|e|∗|V | = Eℓfull = [Eℓ(e,V1)]
T , [Eℓ(e,V2)]

T , · · · [Eℓ(e,VN )]
T ] (10)

The learners’ error matrix is E = {Eℓfull}, ℓ = 1, · · · , L

Similarity measuring Two approaches set the matrix similarity computations for the walks: first, the similarities
between the learners’ walks and the all feasible paths (W × P ); second, the similarities between the learners’
walks and each other (W ×W ). Let a graph similarity measure Simd, based on a distance d, similarity matrices
[Sd(W×P )] = [Simd(Wi, Px)], i = 1, · · · , R and j = 1, 2, · · · , X and [Sd(W×W )] = [Simd(Wi,Wi)], i =
1, · · · , X are defined. Fig. 3 presents the similarity plots between the walks and paths for six distances. The
similarity patterns of a walk are different for each method. However, dissimilarity patterns between different
walks are invariant to methods. For example, the similarity patterns of walks a and b are closer than the patterns
between walks a and c or b and c.

Figure 3. Invariant patterns throughout similarities

Error pattern measuring At this point, the feasible paths represent the standard sequences for performing the
task, and a task error is a deviation from one of them. In turn, the sequences of activities performed by the learners
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were defined as walks in the graph. The embedded learner errors result in a high-dimensional learning error vector
( eq. 10), so for cluster analysis, two reduced forms were applied to the learner error matrices. In both cases, for
each learner, a single error vector is assigned, the components of which are either a) the maximum row vector (eq.
11) or, b) the row sum error vector (eq. 12).

Eℓmax =
[
max(E(ei,V1)) maxE(ei,V2)) · · · max(E(ei,VN ))

]
(11)

Eℓ
∑ =

[ ∑6
i=1E(ei,V1)

∑6
i=1E(ei,V2) · · ·

∑6
i=1E(ei,VN )

]
(12)

Clustering Among several clustering methods, the k-means is the simplest and best-known partitional clus-
tering method with a wide range of applications [21]. Implementation of k-means in Scikit-learn use the op-
timized k-means++. The number of clusters k = 3 was estimated by the Elbow method. Let W = {Wℓ},
ℓ = 1, · · · , L, the learners’ walks and P = {Px}, x = 1, · · · , X the expected paths and the learners’ er-
ror matrix E = {Eℓ}, ℓ = 1, · · · , L, as already defined. The error path similarity matrices [Sd], where d ∈
{dλAdj , dλLap, dGED, dV EO, dResN , dδ−con, dNetsim}, are calculated for [Sd(W×P )] and [Sd(W×W )]. Given the
learners’s walks W = {Wℓ}, ℓ = 1, · · · , L, a cluster of walks is a partition W (i) = {Wℓ}, ℓ ∈ [1, · · · , L] of W ,
such that W =

⋃
W (i), W (i) ̸= ø, ∀i and W (i) ∩W (j) = ø, i, j = 1, 2, 3 with i ̸= j.

Figure 4. Similarities and error pattern clusterings.

Thereby, a total of fourteen clustering derived from the similarity measures are evaluated. From error learners’
matrix definition and its reduction forms, error patterns are extracted by clustering the three error learners’ matrices
E∑, Emax and Efull. Figure 4 shows clustering results of 22 learners’ walks. The colors cells – yellow, gray, and
blue –, identify the three clusters in each clustering column. The order of clusterings columns is in agreement
with the average Silhouette coefficient in the last row. Silhouette values close to 1 indicate optimal clustering and,
−1, the opposite case [22]. The highest silhouette values, around 6.0, wherein similarity was measured between
the learners’ walks and the expected paths. Another common feature of these clusterings is that they result from
matrix-based similarities.

Meta Clustering In the Meta Clustering analysis, clusterings from similarity methods are compared with the
clusterings defined from the error pattern [23]. It identifies which similarity methods can be an approximation
of clustering learners’ walks according to the errors committed during the execution of the task. Taking all 17
clusterings of learners’ walks W = WSd

∪ WE . Once more using k-means, meta clustering is applied to W
T

Figures 5 (a) and (c) present the meta cluster labels distribution of learners’ walks in three meta clusters and their
plot using projections of principal components from Principal Components Analysis (PCA). In both, clusterings
based on error patterns are framed. The average silhouette coefficient of meta clustering is the vertical dashed line
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in Fig. 5 (b). The heights of strips is proportional to the number of clusterings in each meta cluster, and the width
represents the silhouette coefficient for the cluster and, also, for their respective elements in a continuum range
way. Results of meta clustering analysis reveal a low value for the average of silhouette coefficient below 0.3. It
means that meta clusters are not dense, as shown in Fig. 5 (c). That can be a consequence of the variability of
learners’ walks clusters in similarity and error pattern clusterings, already discussed in the maximum occurrence
discussion. Despite that, for the first and the second meta clusters, and also for the most of their elements, silhouette
coefficients are above the average how is showed in Fig. 5 (b). Error pattern-based clusterings, framed in Fig. 5
(a) and Fig. 5 (c), are some of them.

Figure 5. Metaclustering.

The error pattern-based clustering WEmax and WEfull
are in the meta cluster 1 and WEsum in the meta

cluster 2. The similarity-based clusterings WS closest to WEmax
and WEmax

in the meta cluster 1 are the
Graph Edit Distances WSGED(W ×W )

and WSGED(W × P )
. In the meta cluster 2, the normalized resistance similarity,

WSResN(W × P )
, and the DeltaCon0 similarity, WSδ−con(W ×W )

are the nearest clusterings to WEsum , the row sum
error vector of the error learners’ walk matrices. Finally, among the 14 similarity schemes tested, only the matrix-
based similarities achieved the targeted approximation to the students’ error patterns. In addition, the silhouette
coefficient of some of the clusters obtained with the matrix-based similarity approach achieved better results than
the other similarity schemes. While the graph editing distance, GED, works on topological similarities through
graph operations, such as adding and deleting vertices or edges, normalized resistance, and DeltaCon0 comprise
the flow information in the graph. As for sensitivity, while GED can detect local changes, Normalized Resistance
is applied to global graph divergences. The DeltaCon0 is sensitive to both. The results suggest that topological
properties underlie the error pattern in a graph similarity sense.

4 Conclusions

This paper presents a clustering-based graph similarity evaluation applied to learners’ walks extracted from
a virtual training system database. In this context, data mining techniques and clustering methods provide ana-
lytical tools to categorizing learners’ behavior during instructional tasks. The recognition of learners’ patterns is
fundamental to plan instruction, automate learning assessment and deliver real-time feedback to adapt the learning
process to the learners’ needs. Data modeling encompasses the graph based-modeling of an instructional task,
its feasible paths and the errors mapping from the learnears’ walks. The walks were clustered based on graph
similarity measures and the error pattern. A meta clustering analysis of similarity based clusterings and cluster-
ings of error learners’ walks identify similarity measures that are an approximation to the learners’ error pattern.
Some limitations in this work are related to the small dataset (22 observations), the methods and libraries used
in graph similarity and clustering tasks, and should be investigated in future work. The main results show that
matrix-based graph similarities such as edit distance, DeltaCon0, and normalized resistance capture similarities
between two walks in a task graph that resemble clustering based on error patterns. By taking topological changes
in an expected path as a deviation, a learner’s walk might be generated from fundamental deviations. Therefore,
a deeper understanding of deviation-related path changes must be taken into account to create a new error-based
graph similarity measure.
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