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Abstract. There will always be some error with reality in computational modeling of physical phenomena, even
for the most advanced and sophisticated ones. Techniques that incorporate information from the phenomenon’s
observational data can be applied to reduce this error’s uncertainty. These so-called data assimilation techniques
add information from observational data to the modeling result with a reasonable degree of reliability. The Kalman
Filter is one of the most widely used data assimilation methods in the operational weather forecast to better es-
timate the next forecast cycle’s initial conditions (analysis). This work uses data assimilation through artificial
neural networks, applied to the shallow-water model in two dimensions to emulate the Kalman Filter techniques,
using synthetic observations. According to results obtained in previous works, this method presents a significant
reduction in the processing time, maintaining an equivalent quality of the analyzes obtained through the Kalman
Filter. However, even with this reduction in computational cost, when the spatial domain is discretized by a grid
containing many points, the data assimilation by the neural network can still be configured as one of the perfor-
mance bottlenecks. Since the assimilation by neural networks is carried out independently at each grid point, the
parallel strategy employed consists of sub-dividing the domain to execute each in different computational nodes or
cores.

Keywords: Data assimilation, artificial neural network, parallel processing.

1 Introduction

One essential issue for the operational prediction centers is to compute the best initial condition for the next
forecasting cycle. The initial conditional is computed by a data fusion between a previous prediction – background
fields – and observation data. The produced data fusion is called analysis. This data fusion procedure has started
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with the numerical weather prediction, and the process is known as data assimilation (DA). Several methods have
been developed to carry out the DA. Among these methods can be cited optimal interpolation, Kalman filter,
variational method, and particle filter [1–3].

However, all mentioned DA techniques present intensive computation. For reducing the computational ef-
fort for the DA, a supervised artificial neural network is designed to emulate the applied assimilation method.
The multi-layer perceptron neural network with a back-propagation learning algorithm is employed to emulate a
Kalman filter.

Neural network has been successfully used for data assimilation for geophysical models with application
on meteorological models [4, 5], hydrology [6], and space weather application [7]. Here, the DA by the neural
network is applied to the shallow-water equation designed to represent ocean circulation dynamics as described in
Bennett’s book [8]. The neural network is configured to emulate the Kalman filter – see reference [9]. In order
to enhance the computational performance for neural data assimilation, a parallel version of the DA procedure is
developed in this paper.

The next section describes the mathematical model used as a prediction system. Data assimilation methods
– Kalman filter and neural network – are presented in Section 3. The strategy for parallel implementation is
commented in Section 4. Results for speed-up and efficiency are shown in Section 5. The last section addresses
conclusions and final remarks.

2 Shallow-water equations as a model for ocean circulation

Assuming that the vertical dimension is much smaller than the horizontal dimension, the shallow-water sys-
tem can be applied. The system of equations can be derived by vertical integration of the Navier–Stokes equations.
The equations are solved by a numerical approximation, producing fields of oceanic circulation. Two-dimensional
linearized wave equation has the fluid depth (H) and the two-dimensional fluid velocity field (u and v) as indepen-
dent variables, where the gravitational force (g) is the only force acting on the fluid. Following the model described
by Bennett’s book [8], the mathematical model equations are expressed as:

∂u

∂t
− fv + g

∂q

∂x
+ ruu = Fu (1)

∂v
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+ fu+ g

∂q

∂y
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(
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+
∂v
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)
+ rqq = 0 (3)

where (x, y) ∈ (0, Lx)× (0, Ly) and t > 0, f is the Coriolis parameter, (ru, rv, rq) are the damping coefficients,
(u, v) are velocity components, Fu and Fv are external forcing, H is the mean depth of the ocean, and q is the free
surface disturbance. Boundary conditions are shown in Figure 1.

Figure 1. Boundary conditions for the equations (1)–(3).

The finite difference is the method for space discretization, and the forward-backward method was used for
time integration [10]. The Arakawa grid-C is adopted for spatial discretization – see Figure 2.

3 Data assimilation methods

As already mentioned, data assimilation is a scheme to compute the initial condition by combining the back-
ground fields with the available observations, producing the analysis. The supervised artificial neural network is
self-configured to emulate the Kalman filter. Therefore, both DA methods are presented in this section.
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Figure 2. The Arakawa grid-C used for space discretization.

3.1 Kalman filter

A Kalman filter provides a recursive solution to the linear optimal filtering problem. It is an optimal estimator,
infers parameters of interest from indirect, inaccurate and uncertain observations. It is recursive so that new
measurements can be processed as they arrive. Consider the nonlinear stochastic discrete-time dynamical system:

xft+1 = Mtx
f
t + µt

yft = Htx
f
t + νt

where Mt is a mathematical model, µt is the model error, Ht is the mesurement function, νt is the white-noise
sequence associetaded to observations. Under the specified hypotheses the optimal way, in the least squares sense,
to assimilate sequentially the observations is given by the Kalman filter defined by recurrence over the observation
times:

1. Forecast model for state vector (Mt is the matrix of the system):

xft+1 = M{xat } ≈Mt x
a
t

2. Update the forecasting covariance matrix (Wmod is the modeling covariance error matrix):

P f
t+1 = MtP

a
t M

T
t +Wmod

t

3. Compute the Kalman gain (W obs is the measurement covariance error matrix):

Kt+1 = P f
t+1H

T
t+1[W obs

t+1 +Ht+1P
f
t+1H

T
t+1]−1

4. Compute the analysis (DA) (xobs is the state observation vector):

xat+1 = xft+1 +Kt+1[xobst+1 − (Ht+1x
f
t+1)]

5. Update the analysis covariance:
P a
t+1 = [I −Kt+1Ht+1]P f

t+1 .

The dimension of the matrix Mt is related to number of points used for the spatial discretization. In addi-
tion to, the dynamic model matrix Mt we have the error covariance matrices: modeling (Wmod

t ) and observation
(W obs

t ), which are updated at each time step. The matrix operations, such as multiplication, inverse matrix calcula-
tion, are carried out to compute the Kalman gain matrix, yielding a very costly method. These difficulties motivate
an investigation of ANN tool as a method of data assimilation, with obtained gain reaching up to 30 times faster
for the 2D shallow-water problem [9]. In the next section we describe the Artificial Neural Networking as a data
assimilation technique.
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3.2 Artificial neural network (ANN)

Nowadays, there are multiple applications for artificial neural networks (ANN). The use of the neural network
for DA is relatively new. The supervised multilayer perceptron (MLP) [11] with a back-propagation algorithm for
the learning phase was employed to substitute the Kalman filter by enhancing the computational performance for
DA [12]. The best configuration of the MLP-ANN is computed by minimizing the following objective function:

fobj = penalty ×
(
ρ1 × Etrain + ρ2 × Egen

ρ1 + ρ2

)
(4)

where Etrain and Egen are errors during the training and generalization phases, ρ1 and ρ2 are parameters for
balancing the generalization and training errors – here: ρ1 = ρ2 = 0.5 is used. Penalty factor indicates searching
for an ANN with the smallest number of neurons and faster learning convergence. The penalty term evaluates the
ANN complexity, and it is given by:

penalty = c1e
(nneurons)

2

+ c2(nepochs) + 1 (5)

where c1 = 5×108 and c2 = 5×105 are the parameters to computed the ANN complexity [13]. The cost function
(4) is minimized by the multi-particle collision algorithm (MPCA) [14].

4 Parallel version strategy

The data assimilation process described in the Section 3, is summarized by algorithm SW2D DA (Algorithm 1).
For the worked example here, only assimilation for the q-vriable is assmilated. Note that the algorithm (or function)
to implement the shallow-water model (SW2D MODEL) is called at allNt timesteps. In contrast, the Kalman filter
data assimilation algorithm (KF DA) or the neural networks (ANN DA, showed in Algorithm 2) is triggered at
regular intervals of timesteps (data assimilation cycles), represented by freqObsT , called here as the frequency of
observation.

In this article, the Kalman filter algorithm will not be shown in detail since the focus of the work was the
parallelization of data assimilation by neural networks for a space domain with a high number of grid points. In
the Algorithm 2, the DA is carried out independently for each grid point. Therefore, the parallel strategy is to
compute the DA for each grid point in parallel. Considering Ng the number of the grid points, and Np the number
of processors, the analysis is computed by a trivial parallel approach, executing Ng/Np computation cycles for
completing the DA on the entire space domain.

The loops traversing the grid points in the horizontal and vertical directions are parallelized with OpenMP
directives, and the FORTRAN source code where the parallel strategy was implemented is in Listing 1. The same
approach was employed to a parallel version of the shallow-water function (SW2D MODEL), as can be seen in
Listing 2.

!$OMP PARALLEL DO &
!$OMP DEFAULT(shared) &
!$OMP PRIVATE(sX,sY,i,tid)
do sX = 1, gridX

do sY = 1, gridY
tid = omp_get_thread_num() + 1
i = (sX-1)*gridY + sY
xANN(1,i) = qModelnorm(sX,sY,tS)
xANN(2,i) = qObservnorm(sX,sY,tS)
vco(:,1,tid) = matmul(wqco(:,:),xANN(:,i))
vco(:,1,tid) = vco(:,1,tid) - (bqco(:,1))
yco(:,1,tid) = (1.d0 - DEXP(-vco(:,1,tid))) / (1.d0 + DEXP(-vco(:,1,tid)))
vcs(:,1,tid) = matmul(wqcs(:,:), yco(:,1,tid))
vcs(:,1,tid) = vcs(:,1,tid) - bqcs(:,1)
ycs(:,1,tid) = (1.d0-DEXP(-vcs(:,1,tid)))/(1.d0+DEXP(-vcs(:,1,tid)))
qGl(sX,sY) = (ycs(1,1,tid)*(qModelMax-qModelMin) + qModelMax + qModelMin)/2.0

enddo
enddo
!$OMP END PARALLEL DO

qAnalysis(:,:,tS) = qGl

Listing 1. Parallel OpenMP Fortran code for the Algorithm 2
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Algorithm: SW2D DA

input :
qModel: reference SW2D model values (true)
qObserv : observed SW2D values (true + noise)
Nt: number of timesteps
freqObsT : frequency of observation
freqObsT : (defines number of assimilation cycles)
Nx: number of grid points in horizontal direction
Ny : number of grid points in vertical direction
assimType: data assimilation type (KF or ANN)

output:
qAnalysis: result of data assimilation

begin
for t← 1 to Nt do

SW2D MODEL(Nx, Ny , q(t))
if mod(t, freqObsT ) = 0 then

switch assimType do
case KF do

KF DA(Nx, Ny , qAnalysis
(t)

)

end
case ANN do

ANN DA(Nx, Ny , qModel
(t)

, qObserv
(t)

, qAnalysis
(t)

)

end
end

q(t+1) = qAnalysis
(t)

end
end

Algorithm 1: Sallow-Water 2D Data Assimilation (SW2D DA)

Algorithm: ANN DA

input :
Nx: number of grid points in horizontal direction
Ny : number of grid points in vertical direction
qModel: reference SW2D model values (true)
qObserv : observed SW2D values (true + noise)

output:
qAnalysis: result of data assimilation

begin
for i← 1 to Nx do

for j ← 1 to Ny do

v1,2(i, j) =

#neurons∑
l=1

[
w1l(i, j) q

Model + w2l(i, j) q
Observ(i, j) + b(i, j)

]
qAnalysis(i, j) = tanh[v1(i, j)] + tanh[v2(i, j)]

end
end

end

Algorithm 2: Artificial Neural Network Data Assimilation (ANN DA) algorithm, where w1l(i, j) are the
connection weights and b(i, j) is a threshold parameter.

5 Results

The shallow-water system was defined by considering the ocean circulation, and the numerical values for
the parameters are shown in Table 1, with tmax = Nt ∆t, the spatial domain discretization given by ∆x and ∆y,
and Nx and Ny are, respectively, the number of grid points in horizontal and vertical directions, and the upper
indexes (1) and (2) are related to the 40-point and 2560-point grid sizes. Finally, the data assimilation cycle (the
frequency of observation in Algorithm 2) is performed at each 10 time-steps (freqObsT = 10).

The executions were made in one compute node of the Santos Dumont supercomputer (an ATOS machine).
The computer node has two CPU Intel Xeon E5-2695v2 with 48 cores and 384 Gigabytes of RAM. Initially, for
serial performance comparison purposes between the original assimilation method with Kalman Filter and the
method with neural networks, a 40-point grid size was used, i.e., N (1)

x = N
(1)
y = 40. According to runtimes in

Table 2, the KF method is much more computing expensive than the ANN method, nearly six orders of magnitude
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!$OMP PARALLEL &
!$OMP DEFAULT(shared) &
!$OMP PRIVATE(i,j)

!$OMP DO
do i = 1, ni - 1

do j = 1, nj - 1
divx(i,j) = cx * (uGl(i+1, j) - uGl(i, j))

enddo
enddo

!$OMP END DO

!$OMP DO
do j = 1, nj - 1

divx(ni,j) = cx * (uGl(1,j) - uGl(ni,j))
enddo

!$OMP END DO

...

!$OMP END PARALLEL

Listing 2. Parallel OpenMP Fortran code of shallow-water 2D model

Table 1. Parameters used in the integration for the SW-model.

Parameter Value Parameter Value

∆t (h) 180 ru (s−1) 1.8× 104

Nt 200 rv (s−1) 1.8× 104

tmax (h) 3.6× 104 rq (s−1) 1.8× 104

∆x (km) 105 ρa (kg/m−3) 1.275

∆y (km) 105 ρw (kg/m−3) 1.0× 103

N
(1)
x 40 Cd 1.6× 10−3

N
(1)
y 40 H (m) 5000

N
(2)
x 2560 g (m/s−2) 9.806

N
(2)
y 2560 f (s−1) 1.0× 10−4

higher for this test case. In addition to the ANN method being considerably faster, the final result obtained is
relatively close to that of KF, and also to the reference solution (TRUE) for the q shallow-water variable at grid
position (8, 8), as can be seen in Figure 3a. Particularly, at this grid position, the normalized root-mean-square
error (NRMSE) related to reference value is NRMSEKF =0.0065 for KF and NRMSEANN=0.0222 for ANN. And
for the total 25 observations points in the 5×5 grid we have NRMSEKF =0.0034 for KF and NRMSEANN=0.0105
for ANN. Similar comparisons between KF and ANN methods has already previously been done – see references
[7, 9, 12].

Table 2. Serial performance comparison between KF and ANN methods for the 40-point grid size.

Algorithm Time (s)

KF DA 3.33× 10+3

ANN DA 8.13× 10−3

The contribution of this work refers to the study of the parallel performance of the ANN assimilation method
for a computational problem with a high number of grid-points. The number of grid-points used for this purpose
was one with 2560 points in the horizontal and vertical directions, i.e., N (2)

x = N
(2)
y = 2560. For this grid

size, it was unfeasible to obtain the KF data assimilation result, with the actual source code. Figure 3 shows the
comparison result only between the reference q values (TRUE) and the ANN assimilation result (ANN DA) at
grid position (512, 512), but using the same neural network employed for the 40-point grid size. As mentioned,
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(a) (b)

Figure 3. The reference (TRUE) shallow-water, KF and ANN data assimilation values of variable q at grid position
(8, 8) for 40-point grid size (a), and at grid position (512, 512) for 2560-point grid size (b), using weights and bias
obtained for the 40-point grid size neural network.

the neural network for the finer resolution problem is the same of that configured to emulate the Kalman filter with
the a coarser computational mesh. Even so, we can observe the neural network dynamics close to the curve of
the true solution – see Figure 3b. At this grid point, the normalized root-mean-square error (NRMSE) related to
reference value is NRMSEANN=0.1008 for ANN. And for the total 25 observations points in the 5 × 5 grid we
have NRMSEANN=0.0196 for ANN.

The serial execution profiling of the Fortran implementation of Sallow-Water 2D Data Assimilation algorithm
(SW2D DA, in Algorithm 1) is shown in Table 3. The biggest hotspot is the function SW2D MODEL, which
integrates the 2D shallow-water model in all 200 timesteps. The second hotspot is the ANN DA function, which
emulates data assimilation obtained by Kalman filter using an artificial neural network. Important to note that this
function is activated only at the end of each 10-timesteps cycle. Therefore, it is called in only 20 times from a total
of 200 timesteps.

Table 3. Serial performance profiling.

Function Time (s) Time share (%)

SW2D MODEL 240.3 75.4

ANN DA 35.5 11.1

OTHERS 43.0 13.5

Total time 318.8 100.0

The parallel performance of the functions SW2D DA and ANN DA, obtained using up to 32 OpenMP
threads, is presented in Table 4. A reduction about ten times from the serial time was achieved in the first function
(SW2D Model), while a less significant reduction was observed in the second function (ANN DA).

The processing time reduction in the shallow-water function SW2D DA results from the good parallel ef-
ficiency achieved, especially with up to 16 threads. Using 32 OpenMP threads, the runtime reduces from 240.3
seconds to 23.9 seconds. However, we believe the speed-up obtained with 32 threads could be even better. Further
investigation is needed to improve the parallel efficiency with this number of threads.

The parallel performance of the ANN DA function was not the same as the 2D shallow-water function,
mainly due to the unusual behavior with two threads, where the processing time is higher than that with only one
thread. Using 32 OpenMP threads, the runtime is reduced to 10.8 seconds, obtaining a speed-up of about 3 times in
relation to the serial execution. We do not know how to explain this result, which will require further investigation.

After the parallelization performed in the two main hotspots, the remaining code functions (OTHERS in
Table 3), not listed here, spent now the most of the processing time. Therefore, it is also important to improve the
performance of these functions in future developments.
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Table 4. Parallel performance of shallow-water 2D model and ANN assimilation for 2560-grid points in both X
and Y directions.

SW2D MODEL ANN DA

#threads Time (s) Speed-up Eff #threads Time(s) Speed-up Eff

1 240.3 1.00 1.00 1 35.5 1.00 1.00

2 125.7 1.91 0.96 2 53.6 0.66 0.33

4 67.2 3.58 0.89 4 39.8 0.89 0.22

8 38.7 6.21 0.78 8 26.8 1.32 0.17

16 25.9 9.28 0.58 16 18.5 1.92 0.12

32 23.9 10.05 0.31 32 10.8 3.29 0.10

6 Conclusions and final remarks

The parallel processing techniques was applied to reduce the processing time of data assimilation with neural
networks for domains containing a high number of grid points, presenting a greater than 10 speeding-up. However,
a deeper study must be carried out in order to obtain a better parallel efficiency of the functions implemented to
the shallow-water 2D algorithms and data assimilation by neural networks. An initial strategy was implemented
using OpenMP. Thus, one way to try to improve parallel performance can be through a better choice of thread
scheduling. Looking at a higher level of parallelism, one can also use MPI to execute the code in a distributed
memory machine, a cluster p.ex., through a subdivision of the spatial domain. In this case, one can even run larger
instances of the shallow-water problem, using a grid containing an even larger number of points.

Acknowledgements. The authors acknowledge the National Laboratory for Scientific Computing (LNCC/MCTI,
Brazil) for providing HPC resources of the SDumont supercomputer, which have contributed to the research re-
sults reported within this paper. URL: http://sdumont.lncc.br. The authors would also like to thank the Brazilian
agencies for their research support. Author HFCV thanks the National Council for Scientific and Technological
Development (CNPq, Portuguese) for the research grant (CNPq: 312924/2017-8).

Authorship statement. The authors hereby confirm that they are the sole liable persons responsible for the au-
thorship of this work, and that all material that has been herein included as part of the present paper is either the
property (and authorship) of the authors, or has the permission of the owners to be included here.

References

[1] R. Daley. Atmospheric Data Analysis. Cambridge University Press, 1993.
[2] E. Kalnay. Atmospheric Modeling, Data Assimilation, and Predictability. Cambridge University Press, 2003.
[3] S. Reich and C. Cotter. Probabilistic Forecasting and Baysian Data Assimilation. Cambridge University Press,
2015.
[4] R. S. C. Cintra, H. F. Campos Velho, and S. Cocke. Tracking the model: data assimilation by artificial
neural network. In IEEE International Joint Conference on Neural Networks – IJCNN, volume 4, pp. 403–410,
Vancouver, Canada, 2016.
[5] R. S. C. Cintra and H. F. Campos Velho. Data assimilation by artificial neural networks for an atmospheric
general circulation model. In A. El-Shahat, ed, Advanced Applications for Artificial Neural Networks, chapter 14,
pp. 265–285. Intech, 2018.
[6] M. Boucher, J. Quilty, and J. Adamowski. Data assimilation for streamflow forecasting using extreme learning
machines and multilayer perceptrons. Pater Resources Research, vol. 56, n. 1, pp. 1–23, 2020.
[7] H. F. Campos Velho, F. P. Härter, E. L. Rempel, and A. Chian. Neural networks in auroral data assimilation.
Journal of Atmospheric and Solar-Terrestrial Physics, vol. 70, n. 10, pp. 1243–1250, 2008.
[8] A. F. Bennett. Inverse Modeling of The Ocean and Atmosphere. Cambridge University Press, 2002.
[9] H. C. Furtado, R. S. C. Cintra, H. F. Campos Velho, L. D. Chiwiacowsky, and E. E. N. Macau. Neural network
for data assimilation method applied to shallow water equation. In 2nd International Symposium on Uncertainty

CILAMCE 2021-PANACM 2021
Proceedings of the XLII Ibero-Latin-American Congress on Computational Methods in Engineering and
III Pan-American Congress on Computational Mechanics, ABMEC-IACM
Rio de Janeiro, Brazil, November 9-12, 2021

http://sdumont.lncc.br


H. F. de Campos Velho, H. C. M. Furtado, S. B. M. Sambatti, C. Osthoff, M. E. S. Welter, R. P. Souto, D. Carvalho, D. O. Cardoso

Quantification and Stochastic Modeling, pp. 299–311, Rouen, France, 2014.
[10] F. Mesinger and A. Arakawa. Numerical methods used in atmospheric models. Global Atmospheric Research
Program – World Meteorological Organization, 1976.
[11] S. Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall Inc., 1994.
[12] S. B. M. Sambatti, H. F. Campos Velho, H. C. M. Furtado, V. C. Gomes, and A. S. Charão. Self-configured
neural network for data assimilation using FPGA for ocean circulation. In 3Conference of Computational Inter-
disciplinary Science (CCIS 2016), São José dos Campos (SP), Brazil, 2016.
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