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Abstract. Mapping rainwater drainage networks are traditionally lead from image visual interpretation. With the emergence
of automatic extraction algorithms, remote sensing areas began to modernize. To improve the spatial resolution image, sev-
eral works have addressed strategies to generate drainage networks, however, mapping accuracy and computational resources
needed to process this information are still a problem. This work explores the potential of applying different Deep Learning ap-
proaches to the process of extraction information in rainwater drainage networks through digital elevation models obtained by
the Shuttle Radar Topography Mission (SRTM). To perform this, we evaluated three different architectures: U-Net, DeepLab,
and Cycle GANs (Generative Adversarial Networks). The results show that the average intersection over union (IoU) to deter-
mine the drainage networks proved superior in relation to a decision tree used as baseline that proved unsatisfactory to solve the
proposed problem. However, the proposed UNet, DeepLab + FCN and Cycle GAN networks showed averages equal to 93.89%
81.13% and 92.42% respectively. These results indicate that it is possible to perform the geoprocessing of large-scale images
almost in real time, making it an excellent resource to contribute to the mapping of drainage networks.
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1 Introduction

The Earth’s surface is constantly changing through endogenous and/or exogenous processes that shape the relief. En-
dogenous processes are those related to tectono-magmatic processes acting on the Earth’s surface below (crust and mantle).
Exogenous processes are those that act on the Earth’s surface, resulting from mobile agents, such as rivers, winds, tidal move-
ments, temperature variations, and glacier movement. Regarding exogenous agents, rivers are the main modelers of terrestrial
relief.

Depending on the position of the river course, different geological and geomorphological processes can be observed.
Monitoring and following these processes becomes fundamental for decision-making and behavioral analysis of the land surface
and the course of its rainfall networks.

With the advent of Geographic Information Systems (GIS), Digital Elevation Models (DEMs) have played an important
role in acquiring data sets such as flow direction, flow accumulation, and drainage area contribution from a point, providing
basic hydrological information of a watershed for runoff analysis and sediment transport studies [1, 2]. Automated extrac-
tion of datasets from a DEM was pioneered by [3] with the introduction of a deterministic eight-direction single flow (D8)
algorithm, which is implemented in many GIS programs (e.g. ArcGIS®, IDRISI®, GRASS® and PCRaster®). Later, more
sophisticated but less well-known algorithms were developed and are currently available, including Multiple Flow Direction
(MFD) algorithms [4–7].

In order to extract drainage networks closer to reals is necessary to consider variables such as drainage data, flow algo-
rithms, operation parameters, and the geomorphometric characteristics of the watersheds.

Currently, geoprocessing software is used to extracting information about drainage networks identification. However,
depending on the computational capacity and characteristics of the input data, the process may become unfeasible if a very
large amount of data need to be computed in a short period of time. In addition, the use of software demands a high financial
cost, which can turn the business unviable [8].

A practical example of the processing carried out by ArcGIS® is shown in the figure 1. The figure 1(a) was obtained
from SRTM data provided by the USGS 1. The figure 1(b), with dimensions equal to 1800× 1200 pixels, was generated using
ArcGIS and its processing took about 30 minutes on a computer Core i7 with 8 GB of RAM.

Technological advances, especially with the advent of GPUS’s have allowed the use of deep neural networks for ma-
chine learning, making it possible to perform previously unimaginable tasks. This new way of learning has shown interesting

1Public data available in https://www.embrapa.br/satelites-de-monitoramento/missoes/srtm
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(a) SRTM image in blue scale. (b) Reference Image generated by ArcGIS® in blue scale.

Figure 1. SRTM and reference image sample.

performance in several computer vision tasks [9].
Classification techniques, clustering, semantic segmentation, object detection, among others can be implemented using

different types of neural network architectures. Previous works indicate that semantic segmentation techniques through deep
learning are effective in remote sensing areas [10–12]. Thus, this approach shows a new scope for drainage network detection
making use of remote sensing images. We propose two fully convolutional neural networks architectures for stormwater
drainage network detection using remote sensing images. In addition, as a comparative measure, a simple pixel-by-pixel
classification method using image patches as attributes for a Random Forest classification was used to become the baseline of
this work.

2 Fundamentals

Computer vision focuses on develops theory and technology for building artificial systems that extract information from
images or any multidimensional data. From an engineering point of view, it aims to automate tasks that usually would be done
by the human visual systems. In the last years, the increase of computational power has allowed the hegemony of deep learning
methods in computer vision applications, especially for image segmentation and object detection.

Semantic segmentation is a challenging task in computer vision that consists of partitioning an image into smaller frac-
tions, called pixels, and labeling these pixels from a set of classes. In this task, the challenges faced are linked to the character-
istics of the images such as appearance, texture, illumination, among others [13]. Despite the great advances in deep learning
models in recent years, these problems have not yet been solved [14, 15].

Computational limitations to perform convolution operations while maintaining image dimensions have driven the emer-
gence of architectures “encoder-decoder” that perform an undersampling (downsamplig) and oversampling (upsampling) pro-
cesses. In 2017, was presented one of the first encoder-decoder architecture, known as Segnet [16].

Then [17] introduces U-Net that increases the performance of semantic segmentation. The under and oversampling
operations in previous encoder-decoder architectures usually lose the spatial features during the forward propagation. To solve
this problem was introduced “skip connection”, which aim to preserve details that eventually have been lost during the encoding
process [17]. The connections are performed through the concatenation of the corresponding layers between the encoder and
the decoder.

Different implementations of fully convolutional networks have been proposed, seeking to improve the segmentation,
especially the process of preserve spatial information. An important improvement in convolutional neural networks was the
introduction of dilated convolutions (atrous convolution), which use higher spatial dimensions filters in which zeros are inserted
interspersed along each dimension [18]. In addition, DeepLab integrated Global Polling operation, which preserves the main
features of the images [19]. The figure 2 presents the illustrative schema of DeepLab-V3 architecture [20].

In 2014, [21] introduced a new approach in deep machine learning: Generative Adversarial Networks (GANs). The
proposed architecture and the concepts behind it were considered one of the most interesting ideas in the last 10 years in the
field of machine learning. GANs use the concept of a two-player game in the training process. Basically, it is a game between a
generator and a discriminator who try to outdo each other by performing competitive training. The generator aims to generate
samples from a random distribution while the discriminator distinguishes whether or not the generated data is real or fake.

GANs became popular in different applications such as image, video, and text generation. Since then, new concepts were
introduced that evolved this architecture, such as the insertion of conditions (conditional GANs) to generate new images [22]
and also applications aiming to generate images from one domain to another (cyclic GANs [23]).

Cyclic GANs (Cycle GANs) are used in problems where paired data doesn’t exist. In the case of images, for each image
in the X domain, it is desired to obtain a corresponding version in the Y domain. In this way, The network proposes to learn
both the mapping: G : X → Y, as well as the inverse mapping F : Y → X. For this, a cyclic consistency loss function is
introduced. The total loss function is given by the equation 1.
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Figure 2. Schematic of the DeepLab architecture implemented.

L(G,F,DX,DY) = λGANLGAN (G,DY,X,Y)+λGANLGAN (F,DX,Y,X)+λcycLcyc(G,F)+λident(G,F) (1)

Where each term denotes, respectively, the loss of representation from domain X to domain Y, analogously to the loss
of representation from domain Y to domain X, the loss due to cyclic consistency (Fy(G(X)) ≈ X - and vice versa)) and loss
of identity. figure 3 shows a schematic of the training process of a cyclic GAN network.

Figure 3. Schematic of the Cycle GAN architecture implemented.

2.1 Evaluation Metric

Intersection over union (IoU)

In image segmentation, the main goal is based on labeling each pixel in an image according to a specific class. IoU is
a commonly used evaluation metrics to assess the performance of segmentation methods based on the labels of the reference
image and the labels assigned by the network [24]. In IoU the segmented image is compared with the reference. The corre-
sponding labels, i.e. the intersection between the two images is known as true positive. The area of the reference that was not
detected by the algorithm is known as a false negative. Whereas the area of the image delivered by the model that does not
match the reference is known as false positive. The intersection over the union is calculated by the ratio between the intersection
of the reference image and the image delivered by the proposed model over the union between these two images.
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3 Methodology

3.1 Database

The database used in this work relies on 13 remote sensing images - representing digital elevation models - of dimensions
1800× 1200 pixels, obtained by the SRTM (Shuttle Radar Topography Mission) mission. The images are public and available
on the website of the National Institute for Space Research (INPE2). Each image were processed using ArcGIS® software to
obtain the storm water drainage network. The image was divided into patches randomly on dimensions 128 × 128 pixels.
Obtaining 50000 examples (patches) for each image. Although they are distinct examples, many of these patches overlap.

For training, three images were selected, for a total of 150000 patches (3×50000). The examples were normalized (mean
value equal to 0 and a standard deviation equal to 1) and the labels were obtained through geoprocessing. These images were
annotated with the class drainage network and class non-drainage network. The “non-drainage network”, which represents the
white region in the figure 1(b), occupies approximately 94% of the image, being the dominant class.

Due to the characteristics of the architecture of the neural network known as Deeplab, it was necessary to perform an
initial pre-processing on the data to minimize the imbalance of classes, and additional pre-processing was performed on the
label of the image. The regions where there was a stormwater drainage network (regions in blue in the figure 1(b)) were
dilated, considering a radius equal to three pixels. The dilation process adopted is exemplified in figure 4, where increases the
presence of class “drainage network” in the samples from 6% to approximately 21%. For other architectures, the database did
not undergo this additional preprocessing.

Real label Dilated label

Figure 4. Example of a pixel dilation process considering a neighborhood equal to one. In this process, all
neighboring pixels receive the same information from the central pixel, thus expanding the object within the image.

In addition to the 50000 patches, the images used for testing also underwent another preprocessing. Each image was
fractionated into reduced 128 × 128 pixel images such that there is no overlap between the images. The original image was
padding (adding zeros on the edges) to multiple dimensions of 128. Thus, 150 samples were extracted from each image. To
evaluate the performance of the model to predict drainage networks, the prediction was compared with the drainage networks
obtained by the geoprocessing software.

3.2 Implemented architectures

Two modified architectures for image segmentation were implemented: U-net and DeepLab. In addition, a cyclic gener-
ative adversarial network (Cycle GAN) was implemented.

For the U-Net architecture, dropout layers were added between convolutional layers of each convolutional block. The
dropout layer introduces noise throughout training, and its rate was varied across the encoder and decoder layers of the network.
In addition, all the convolutional layer’s weights initialize with a normal distribution. For this method, the weights are initialized
with the size of the previous layer, which helps to achieve a global minimum of the loss function faster and more efficiently. The
weights are still random but differ in range depending on the size of the previous layer of neurons. This provides a controlled
initialization, so the gradient descent becomes faster and more efficient. Finally, the batch normalization technique was not
used throughout training, so the BatchNormalization layers were not added to the network architecture.

For DeepLabV3 architecture, represented in figure 2, the pre-trained network Xception was used as a backbone, which
integrates depth-separable convolutions into the network architecture [25]. Despite being considered the state of the art of
semantic segmentation, DeepLab presented difficulty for stormwater drainage networks segmentation. Therefore, the drainage
network mask was dilated for the training with DeepLabV3. A fully convolutional network (FCN) was built and trained to
perform the erosion process in the images. This network was used because the normal erosion process promoted discontinuities
in the drainage networks that were being predicted by Deeplab. The FNC was built with 4 convolutional layers having between
them Batch Normalization layers with an activation layer with the ReLu function. In addition, linear activation functions were
used for the first three convolutional layers and the sigmoid activation function for the last convolutional layer.

Finally, the Cycle GAN performs the mapping from the remote sensing images to the drainage network domain. The train-
ing process is illustrated in figure 3. In this architecture, convolutional blocks based on ResNet were used. The configurations
of the generators and discriminators are presented in the figure 5.

2Publicly available data and https://www.embrapa.br/satelites-de-monitoramento/missoes/srtm
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(a) Generator Architecture (b) Discriminator Architecture

Figure 5. Schematic illustration of the architecture of the Generators (a) and Discriminators (b) of Cycle GAN.

The formation of a ConvBlocks is composed of a convolutional layer, batch normalization layer, and an activation layer.
In the formation of a ConvTransposeBlock, we have a convolutional layer, instance normalization layer, and an activation layer.
In addition, ResnetBlock has a convolutional layer and two blocks of instance normalization layer and activation layer.

3.3 Experimental Setup

All experiments were performed using an NVIDIA V100 GPU 32GB. The thirteen images were divided as follows: three
were used for training and validation (150000 examples) that were split into 75% and 25% for each set, respectively. The
remaining ten images were used for testing. In addition, the parameter optimization process was performed on top of the
training set only, to avoid overfitting problems.

All the model implementations were performed using Keras. The DeepLab and U-Net models were trained using a
backpropagation algorithm with ADAM optimizer and binary cross-entropy loss function represented by the equation 2 where
yi is the label of the i-th pixel (1 for pixels representing drainage networks and 0 for non-representative pixels) and p(yi) is
the probability that the i-th pixel is from a region with a drainage network. Whereas for Cycle GAN the lost function used is
represented by the equation 2. In addition, the weights initialization for all convolutional layers were using a normal distribution
with a standard deviation equal to 0.02.

L = − 1

N

N∑
i=1

yi · log(p(yi)) + (1− yi) · log(1− p(yi)) (2)

For the training process, a learning rate decay was used with 0.001 and an early stopping with 15 epochs was used to controlling
the end train condition.

4 Results and Discussions

The table 1 summarizes the performance metrics obtained by training the proposed models. The table shows the mean
intersection over union (IoU) matrics for ten image test data.

Random Forest U-Net DeepLab (Dilated label) Cycle GAN

Mean 54.5% 93.89% 81.13% 92.43%

Table 1. Mean intersection over union (IoU) metrics for ten test image (not presented to the net during the training
process).

To visually evaluate the performance to segment drainage networks using the proposed architectures, fractions of one
of the test images are used and are shown in figure 6. The images were represented in blue scale by convention. Table 1
and figure 7 notices an acceptable performance on U-Net architecture for the segmentation of drainage networks, having an
mean IoU of 93.89%. The presence of “skip connections” in the U-Net architecture, which connects the encoder layers with
the corresponding decoder layers, has the ability to preserve important details of the remotely sensed image. Since drainage
networks are very compact, specific features of the input image are important in defining the location of these networks. In
our experiments, the insertion of dropout layers inside the architecture improves the model generalization, avoiding overfitting
during the training process.

For DeepLab architecture, tests were initially performed using the original labels, i.e., without any dilatation transfor-
mation. However, this approach was not successful. This fact can be explained by the DeepLab V3 use a disproportionate
oversampling operation in the network decoder, which makes the network unable to correctly map the drainage networks due
to their characteristics. The drainage networks represent small portions of the full image, approximately 5%. Moreover, these
networks are not concentrated in a small portion of the image, they are scattered forming small objects. The DeepLab V3
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(a) Reference (remote
sensing image)

(b) Real drainage networks (c) Dilated real drainage
networks

Figure 6. SRTM image sample, real label and dilated label.

decoder relies on an oversampling operation that scales the image dimensions from 16 × 16 → 128 × 128. This upsamplig
operation impairs the ability to map very small objects within the image.

A solution found, was to dilate the drainage networks mask to perform the DeepLab V3 training. This expansion increases
the drainage networks region in the training samples facilitating the networks mapping. A fully convolutional network (FCN)
was trained, from the three images selected for training, to perform the erosion process of the drainage networks. The FCN
showed an mean IoU of 95.8% in the erosion process.

Analyzing Table 1, in terms of accuracy and meanIOU, it can be seen that, among the deep learning models, DeepLab
has the worst ability to identify drainage networks. A good identification can be observed on the dilated drainage networks
comparing the predicted mask shown in figure 7(d) and the ground truth mask in figure 6(c). When performing the erosion
process on the dilated predicted mask the final quality of the segmentation decreases, as can be seen in figure 7(e).

Finally, the Cycle GAN architecture presents an acceptable performance for this task, having a 92.43% in the IoU metric
evaluation. This fact also can be observed by comparing the prediction made by Cycle GAN (figure 7(c)) and the reference
used (figure 6(b)). Moreover, it was the architecture with the highest accuracy rates, despite having the lowest recall.

(a) Random Forest (b) U-Net (c) Cycle GAN (d) Deep Lab (e) FNC

Figure 7. Prediction of drainage networks performed

5 Conclusions

The proposed architectures have demonstrated the capability of using deep learning models for determining storm
drainage networks through remote sensing images. Compared to the baseline used, the proposed models had a substantial
gain over a more traditional classification technique like Random Forest that had its performance in terms of mean IoU equal to
54.5%. With an mean IoU higher than 90%, the techniques based on Deep Learning have shown to be powerful tools to perform
the geoprocessing of large-scale images almost in real-time with good accuracy, a fact that can make the work of specialists
more dynamic and efficient, thus bringing significant gains.
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