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Abstract. The main obstacles to the widespread use of the PMS are the high financial and time costs for carrying 

out on-site assessments and the difficulty of processing and analyzing the data to generate the diagnoses of the 

current condition of the pavement. With technological advancement, some techniques such as computer vision, 

image processing, and machine learning can automatically extract the information of the pavements' condition. 

The present study proposes the exclusive use of images from cameras attached to a vehicle, simple collection and 

reduced cost, and extraction of information on pavement defects using a CNN. The research developed object 

detection models with YOLO architecture to identify potholes and patches. It was analyzed the metrics impact of 

the image size (224x224, 320x320, 416x416 pixels) and number of iterations for Yolo version 3 and 4. As 

expected, the increasing image size resulted in improved metrics results and the expansion of the iterations led to 

an improvement in the IoU. The CNN that presented the best overall performance, combining all the metrics, was 

based on Yolov3, with an image size of 416x416 and 6000 iterations training, in which it obtained an F1-score of 

79.00%, an average IoU of 64.59%, and mAP@0.50 of 73.85%.  
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1  Introduction 

The pavement management system (PMS) has been used for years to support managers in making decisions to 

maintain and extend the useful life of pavements and plan interventions and the necessary resources in the short, 

medium, and long term. Pavement management aims to effectively apply financial resources, providing 

comfortable, safe, and economical pavements to users. In other words, it allows for the best allocation of resources, 

following a prioritization system through the assessment of the pavement, minimizing maintenance and 

rehabilitation costs. However, the acquisition of information and data is the bottleneck for implementing and using 

the PMS. The pavement assessment can be manually or automatically. The manual approach is falling out of favor 

due to its subjectivity, high financial costs, time, and human resources. Manual inspection is becoming impractical 

due to the required scale and frequency [1]. Depending on the size of the road network, the execution of emergency 

services, such as stopgap operations (fill the potholes), is made difficult due to the lack of information such as the 

number of potholes to estimate costs and location to plan the execution of interventions. 

The evolution of science and technology, together with reducing the cost of electronic component manufacturing, 

enables the investigation of new techniques and tools that objectively and automatically perform detection. Due to 

the above, universities and research centers collaborate to obtain clear images of roads and detect any road 

deterioration. At present, different techniques aim to detect the deterioration of road surfaces, for example, using 

a laser, vibration sensors, and images. The development of techniques based on image processing has prompted 
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research into machine learning methods capable of detecting different types of deterioration of road surfaces. [2] 

In all the investigations that offered a solution to detection through pattern recognition techniques, an algorithm 

was constructed that is capable of image recognition and the elimination of the problems that traditional deep 

learning solutions entail—the You Only Look Once (YOLO) algorithm. YOLO is an algorithm that works in real-

time and computationally limited devices since only a single forward propagation through the neural network is 

necessary to determine a prediction. In this sense, the research aims to develop a pothole and patch detector, 

capable of identifying pavement defects in the highways from images obtained from evaluation vehicles through 

deep learning solutions and the You Only Look Once (YOLO) algorithm. 

2  Literature Review 

Deep learning methods aim at learning hierarchies of features with features from higher levels of the hierarchy 

that are formed by a combination of lower-level features. Learning features at multiple levels of abstraction allow 

a system to learn complex functions mapping the input to the output directly from data, without depending on 

human-crafted features [3]. Deep learning technologies have achieved success in various computer vision tasks 

such as image classification, object detection, and image segmentation.  

According Russakovsky et al. (2015) image classification, Figure 1 (A), involves predicting the class of one or 

more objects in an image. Object localization refers to identifying the location of one or more objects in an image 

and drawing abounding box around their extent. Object detection, Figure 1 (B), combines these two tasks: localizes 

and classifies one or more objects in an image. Segmentation assigns a label or a score to each pixel in the image, 

Figure 1  (C). 

 
Figure 1. Example of cracks and potholes identifications by the methods (A) Multi-label Classification, (B) 

Detection and (C) Segmentation.  

Methods for object detection generally fall into either machine learning-based approaches or deep learning-based 

approaches. For Machine Learning approaches, it becomes necessary to first define features using one of the 

methods below, then using a technique such as support vector machine (SVM) to do the classification. On the 

other hand, deep learning techniques can do end-to-end object detection without specifically defining features and 

are typically based on convolutional neural networks (CNN). 

The main object detection based on deep learning architecture are R-CNN [5], Fast R-CNN [6], Faster R-CNN 

[7],  cascade R-CNN [8], Single Shot MultiBox Detector (SSD) [9], You Only Look Once (YOLOv4) [10], [11], 

[12], and Retina-Net  [13]. 

Several researches have been developed for each computer vision task, within the scope of pavement assessment. 

How the present work is focused on using object detection as an approach to identify and count the defects in the 

pavement, so Table 1 presents research developed using object detection as an identification method. 

Table 1. Research is on pavement assessment using deep learning to object detection. 

Defetcs Research’s 

Pothole [2], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28] and [29] 

Crack [2], [14], [15], [16], [17], [18], [19], [20], [21], [29] and [30] 

Other [15], [14], [16], [17], [18], [19], [29], [31] and [32] 
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Cracks and potholes were the distress more researched, and the primary architecture model used was YOLO, as 

shown in Table 2.  

Table 2. The deep learning approaches used for pavement defect detection 

Architecture Research's 

YOLO 

V1 [18] 

V2 [14], [17], [22], [23], [26] and [29] 

V3 [15], [19], [21], [24] and [28] 

V4 [2] and [20] 

Faster R-CNN [2], [16], [17], [30], [21], [24], [29] and [32] 

SSD [17], [30], [21], [24], [27], [28] and [31] 

Other [17], [20], [22], [24], [25] and [27] 

YOLO has been evolving in its different versions, including YOLOv3 and YOLOv4, the latest stable versions. 

The difference between the versions is that YOLOv3 uses characteristic pyramid networks (FPN) for object 

detection, whereas YOLOv4 uses PANet as a method of aggregating parameters for different detection levels 

together with an increase in average precision (AP) and frames per second (FPS), a feature that makes the accuracy 

of YOLOv4 much higher than that of YOLOv3. [2] 

3  Methods 

3.1 Dataset 

The datasets images are from two state highways located in Ceará state, Brazil. All highways have hot mix asphalt 

as the surface with granulometric composition "C" range by the National Department of Transport Infrastructure 

[33]. The right of way (ROW) video images with 1920x1080 were captured by a survey vehicle by Garmin VIRB 

Ultra30 Action camera. Defects found in the pavement's images are, potholes and patches in large numbers of 

images and a few cracks, due to the amount of crack on the highway available being low would not have enough 

images for the model training, so it was decided to create the detector with the pothole and patch labels. 

It was select 360 images to label, with the aid of the labelImg software, the process of labelling the defects in each 

image was performed, as shown in Figure 2. In general, the images had more than one defect, and the select images 

produced a total of one thousand labels, 500 for each class, pothole, and patch. During the CNN training, 80% of 

the images are used for the training set and 20% for the validation set, each chosen randomly. 

 
Figure 2 - Labeling of defects in the pavement 

3.2 Proposed Procedure 

Training is a procedure involving mathematical optimization, involving a cost function, called loss function, so 

that the neural network's weights and biases can be automatically tuned. In this process, the training data with 

expected labels are presented to the optimization procedure to find a global minimum loss function. 

CNN training has massive computational power consumption. Therefore, it is necessary to use GPUs that can 
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process data in a parallel, the other alternatives are field-programmable gate arrays or application-specific 

integrated circuits. For this purpose, the computing resources of Google Colab are used to conduct CNN training. 

Due to the nature of Google Colab, each training is performed on a randomly allocated GPU, for the models two 

GPU were used, Tesla P100-PCIE-16GB and Tesla V100-SXM2-16GB.  

The models are based on transfer learning, and the backbones used for training were CSPDarknet53 to Yolov4 and 

Darknet-53 to Yolov3, images size tested were 224x224, 320x320, and 416x416 pixels, the batch size of 64 and 

subdivisions of 16, and binary cross-entropy with logistic activation (sigmoid) as the loss function for the class 

predictions. For all models developed were used the same optimization parameters, momentum used was 0.9, 

decay of 0.0005 and learning rate (LR) 0.001.  

The number of interactions recommended by the Yolo developer is 2000 iterations for each class, with a minimum 

number of 6000 iterations [10]. During the development of this research, the progressive expansion of the iterations 

number of training was analyzed, 1000 of range, with a minimum value of 1000 to a maximum value of 8000 

(double the recommended by developer [10]). 

Five different metrics were used, intersect over union (IOU), precision, recall and average precision and mean 

average precision (mAP). 

Intersect Over Union (IOU) can be computed as Area of Intersection divided over Area of Union of two boxes, so 

IOU must be ≥0 and ≤1. When predicting bounding boxes, we need the find the IOU between the predicted 

bounding box and the ground truth box to be ~1. 

    (1) 

 

Precision can define precision as the ratio of true positive - TP (true predictions) and the total number 

of predicted positives (total predictions). The formula is given as such: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
     (2) 

Recall which is the ratio of true positive (true predictions) and the total of ground truth positives (total number). 

The formula is given as such: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
         (3) 

Average Precision (AP) and Mean Average Precision (mAP): A brief definition for the average precision is the 

area under the precision-recall curve. AP combines both precision and recall together. It takes a value between 0 

and 1 (higher is better). To get AP =1 need both the precision and recall being equal to 1. The mAP is the mean of 

the AP calculated for all the classes. 

4  Results and Discussion 

As expected, it was increasing the size of the images resulted in improved metrics results, in general, the size 

images of 416x416 pixels had the best results of accuracy, mainly for the Pothole. However, when testing sizes 

larger than 416x416, training became significantly time-consuming and was discontinued. Yolov3 models were 

more stable mAP results throughout training. In contrast, Yolov4 had a large variation of mAP and loss values, as 

shown in Figure 3. 
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Figure 3 – Loss & mAP chart during training Yolo v3 and v4 - 416x416 pixels models 

The Table 3 presents iteration the each model configuration had the best overall performance, combining all the 

metrics. The CNN that presents the best results was based on Yolov3, with an image size of 416x416 and 6000 

iterations, in which it obtained an F1-score of 79.00%, an average IoU of 65.9%, and mAP@0.50 of 74.5%.  

Of the 10 best models, 9 were from Yolov3; it shows that the changes made to the Yolo architecture did not bring 

real gains for the potholes and patches detectors on this dataset. And the dimensions of 416x416 and 224x224 are 

predominant in the best models, with the dimension of 416x416 present in 5 and 224x224 in 4 of the best models. 

Table 3. Ranking of 10 best models 

# Model 
AP 

Precision Recall 
F1-

score 

Average 

IoU 

mAP@

0.50 Pothole Patch 

1 Yolov3 - 416x416 - 6000 80,2% 68,8% 89,0% 71,0% 79,0% 65,9% 74,5% 

2 Yolov3 - 224x224 - 2000 77,2% 76,5% 83,0% 71,0% 77,0% 61,3% 76,9% 

3 Yolov3 - 224x224 - 3000 78,1% 74,9% 81,0% 74,0% 78,0% 60,3% 76,5% 

4 Yolov3 - 224x224 - 8000 79,7% 70,0% 83,0% 74,0% 78,0% 62,1% 74,9% 

5 Yolov3 - 416x416 - 7000 74,2% 69,9% 87,0% 70,0% 77,0% 65,8% 72,0% 

6 Yolov3 - 224x224 - 7000 76,5% 69,8% 86,0% 69,0% 76,0% 64,3% 73,1% 

7 Yolov4 - 320x320 - 3000 80,7% 72,5% 78,0% 74,0% 76,0% 56,8% 76,6% 

8 Yolov3 - 416x416 - 8000 77,8% 69,4% 82,0% 72,0% 77,0% 61,9% 73,6% 

9 Yolov3 - 416x416 - 3000 81,6% 63,6% 81,0% 73,0% 77,0% 61,5% 72,6% 

10 Yolov3 - 416x416 - 2000 79,0% 71,1% 76,0% 75,0% 76,0% 56,7% 75,0% 

Table 4 presents the five best results for the defects separately. It is possible to confirm that the pothole defect is 

easier to identify and presented AP values around 6% higher than the AP for the patch. When analyzing the defects 

individually, the best performance model to pothole was Yolov4, 8000 iterations, and 416x416 pixels with an AP 

of 82.2%, and for the patch, it was Yolov3, 2000 iterations and 224x224 pixels with an AP of 76.5%.  

Table 4. Best results for the defects separately 

Pothole   Patch 

Model Average Precision   Model Average Precision 

Yolov4 - 416x416 - 8000 82,2%   Yolov3 - 224x224 - 2000 76,5% 

Yolov3 - 416x416 - 3000 81,6%   Yolov3 - 224x224 - 3000 74,9% 

Yolov3 - 320x320 - 4000 81,3%   Yolov4 - 320x320 - 3000 72,5% 

Yolov3 - 320x320 - 5000 81,0%   Yolov3 - 224x224 - 6000 71,8% 

Yolov4 - 320x320 - 3000 80,7%   Yolov3 - 416x416 - 2000 71,1% 

In general, the expansion of iterations led to an improvement in the IoU and F1-Score, but not necessarily the other 

metrics. The analysis of the mAP results did not show a specific trend regarding the number of interactions and 

performance gain, with good results from 2000 iterations onwards depending on the configuration of the images, 
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such as Yolov3 - 224x224. 

Figure 4 shows an example of the detection performed by the best model: Yolov3 model - 416x416 pixels trained 

with 6000 iterations. It was found that the model can detect defects up to a range of approximately 3-5m in front 

of the camera point. In Figure 4, it is possible to see that it was able to identify 4 potholes closest to the survey 

vehicle, however, it did not detect the farthest patches. 

 
Figure 4. Defect detection by Yolov3 - 416x416 pixels model 

As the evaluation is continuous, the survey vehicles have an odometer that can be connected to the cameras and 

thus program the image capture at specific distances, being recommended to obtain the images every 5m, avoiding 

the duplication of detection and the non-detection of defects that are far apart.    

5  Conclusions 

With the research, it was possible to verify that the Yolo architecture could detect the defects in the pavement in a 

satisfactory way. The Yolov3 - 416x416 model showing the best combine metrics results. Regarding the images 

dimensions, 416x416pixels and 224x224pixels had the best results of the models; both can be used, being limited 

by the processing time during the training. If the computer used is more powerful, the larger size can be used; 

otherwise, the smaller size will also bring satisfactory results. The pothole defect is easier to identify compared to 

the patch. 

Although it was not possible to identify an ideal interaction number for the training of this dataset, it is 

recommended to keep the analysis range from 1000 to 8000 iterations for the next training. This work provides 

support for the continuation of the research; the image size and iteration range settings were defined as 

416x416pixels, and the iterations range is 1000 to 8000. The research next stage will be the complete analysis of 

the dataset of the 10,000 labeled images, with variations in lighting throughout the day. 
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