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Abstract. The usage of WENO-type extrapolation allows achieving high order and high resolution when solving 

fluid dynamics numerical problems with the finite difference method and rectangular meshes. Developing new 

modifications for this extrapolation implies better handling of boundary conditions. Hence, in this work, we are 

interested in the verification of three WENO-type extrapolations together with four WENO schemes in smooth 

and discontinuous test problems. Four different test problems modeled by the Euler equations will be solved with 

the finite difference method, positivity-preserving Lax-Friedrichs flux, and strong stability preserving Runge-

Kutta. The first two are one-dimensional, and the others are two-dimensional. The one-dimensional discontinuous 

problem is a severe test case for the WENO-type extrapolations. The two-dimensional discontinuous problem is 

the double Mach reflection, which presents oblique shock and other nonlinear phenomena interacting with a wall. 

We show that the design accuracy is being reached for smooth problems, that the discontinuities and nonlinear 

phenomena are well captured, and we identify common features and areas of improvement for the WENO-type 

extrapolations. 
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1  Introduction 

In finite difference and volume methods, the properties at interfaces and boundaries are approximated values, 

as shown by Shu [1], and Tan and Shu [2]. Some nonlinear phenomena, such as shock waves, may appear inside 

the stencil used in the reconstruction, lowering the order and resolution of solution at boundaries. Many authors 

(Tan and Shu [3], Tan et al. [4], Lu et al. [5], Borges et al. [6], Lu et al. [7], Filbet and Yang [8]) have developed 

strategies to prevent or reduce this loss. One of them is the usage of WENO-type extrapolations, which allows to 

keep a high order and high resolution at the boundary in smooth problems. Alongside with this method, new types 

of WENO scheme can be used to better achieve the solution (Borges et al. [9], Acker, Borges, and Costa [10], van 

Lith, Thije Boonkkamp, and IJzerman [11], Zhu and Shu [12], Hong, Ye, and Ye [13]).  

Adopting the strategy and smoothness indicators proposed by Wang, Shu, and Ning [4] and using 

improvements (Borges et al. [6], Lu et al. [7], Filbet and Yang [8]), we solved four CFD tests problems aiming the 

verification of WENO-type extrapolation with different WENO schemes.  
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2  Numerical methods 

For this study, we are interested in the following set of equations 

 𝑼𝑡 + 𝑭(𝑼)𝑥 + 𝑮(𝑼)𝑦 = 𝟎 , (1) 

with 

 𝑼 =  [

𝜌
𝜌𝑢
𝜌𝑣
𝐸

] , 𝑭(𝑼) =  [

𝜌𝑢

𝜌𝑢2 + 𝑝
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] , 𝑮(𝑼) = [
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] , (2) 

where ρ is the density, u and v are the x and y velocities, E is the total energy per unit volume, and p is the pressure.  

We discretized the model equations with a Finite Difference conservative scheme (Shu [1]) 
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We also employed a positivity preserving Lax-Friedrichs flux splitting (Zhang and Shu [14]) 

𝑭 ± (𝑼𝑖,𝑗) =  
1

2
(𝑼𝑖,𝑗 ±

𝑭(𝑼𝑖,𝑗)

𝛼𝑥

) , (4) 

where we use constant mesh sizes (Δx = Δy) and αx is the maximum absolute eigenvalue for the entire domain.  

We approximate the numerical flux with the Embedded WENO-JS and WENO-Z, multi-resolution, and 

WENO-Z+ schemes (Borges et al. [9], Acker, Borges and Costa [10], Lith, Boonkkamp, and IJzerman [11], Zhu 

and Shu [12]). 

We employed the strong stability preserving Runge-Kutta to handle the time integration (Shu [1]) 

𝑼(1) =  𝑼𝑛 +  𝛥𝑡𝐿(𝑼𝑛) 
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(5) 

where (1) is the first Runge-Kutta stage and (2) is the second, L(·) is the spatial approximation, n is the actual and 

n + 1 is the next time step, and Δt is the time step. 

The time steps were computed with the CFL number and (Lu et al. [5]) 

Δ𝑡 = min [
𝐶𝐹𝐿

𝛼𝑥/Δ𝑥 + 𝛼𝑦/Δ𝑦
, min(Δ𝑥, Δ𝑦)

5
3⁄ ] , (6) 

where αy is the maximum absolute eigenvalue to the y-direction flux. 

We imposed the boundary condition in only one boundary with known information and the WENO-type 

extrapolation of Tan et al. [4], Lu et al. [7], and Filbet and Yang [8]. At the other boundaries, we employed the 

analytical or exact solution, constant values, or periodic boundary conditions, depending on the problem at hand. 

3  Test problems 

3.1 One-dimensional Euler equations 

Our first problem is a 1D smooth test case for the Euler equations. The domain and the initial condition were 

[−𝜋, 𝜋] and  

𝜌(𝑥) = 1 + 0.2 sin(𝑥) , 𝑢 = 1, 𝑝 = 2. (7) 

Then, the analytical solution is simply 

𝜌(𝑥, 𝑡) = 1 + 0.2 sin(𝑥 − 𝑡) , 𝑢 = 1, 𝑝 = 2. (8) 
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We used the analytical solution at the left boundary ghost points and focused on efforts at the right boundary. 

The velocity and pressure were constant and known at the boundary. For the density, we needed to compute the 

analytical solution for each Runge-Kutta step regarding (Tan et al. [4]) 

𝜌𝑛~ 𝜌(𝑡𝑛) , 

𝜌(1)~ 𝜌(𝑡𝑛) + Δ𝑡
𝜕𝜌
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(𝑡𝑛) , 
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2
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𝜕𝑡
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4

𝜕2𝜌

𝜕𝑡2
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(9) 

Since u = 1, we have λ3 > λ2 > 0. Depending on the speed of sound magnitude (λ1 = u – a), we imposed either 

one or no boundary conditions. If λ1 < 0, we imposed one boundary condition. To do this, we used the ILW 

strategy, i.e., we computed ρ and ∂ρ/∂t with the analytical solution, extrapolated the second and third characteristic 

variables, and computed 

𝑉1 =
𝜌 − 𝑟21𝑉2 − 𝑟31𝑉3

𝑟11

 , (10) 

𝜕𝑉1

𝜕𝑥
=

𝜕𝜌 𝜕𝑥⁄ − 𝑟21(𝜕𝑉2 𝜕𝑥⁄ ) − 𝑟31(𝜕𝑉3 𝜕𝑥⁄ )

𝑟11

 . (11) 

Higher-order derivatives are available through the WENO-type extrapolation, as shown in Tan and Shu [2], 

Tan et al. [4], Lu et al. [7], Filbet and Yang [8]. With the characteristic variables and its derivatives at the boundary, 

we approximated the characteristic variables at the ghost points through a Taylor expansion 

(𝑉𝑚)𝑖 = ∑
(𝑥𝑖 − 𝑥𝑟)

𝑘!

𝜕𝑘𝑉𝑚

𝜕𝑥𝑘

4

𝑘=0

, (12) 

where xr is the right boundary position. Then, at each ghost point 

𝑼𝑖 = 𝑹𝑽𝑖 . (13) 

For the smooth problem, we are interested in the accuracy results. As shown in Tab. 1, the WENO-Z+ with 

WENO-type extrapolation of Tan et al. [4] achieved the design order. We only show the accuracy results for this 

combination, since the other also achieved the design orders. 

Table 1. L1, L2 and L∞ norms and its orders for the 1D smooth problem density and tf = 1. 

Δx L1 norm Order L2 norm Order L∞ norm Order 

2π/10 3.05E – 03 -  6.23E – 03 -  1.91E – 02 -  

2π/20 1.25E – 04 4.61 3.35E – 04 4.22 1.46E – 03 3.71 

2π/40 1.42E – 06 6.46 2.23E – 06 7.23 1.10E – 05 7.05 

2π/80 2.76E – 08 5.69 3.88E – 08 5.84 1.89E – 07 5.86 

2π/160 7.29E – 10 5.24 9.76E – 10 5.31 4.53E – 09 5.38 

2π/320 2.11E – 11 5.11 2.76E – 11 5.14 1.16E – 10 5.29 

For the discontinuous problem, the domain and the initial condition were [-1,1] and 

𝜌(𝑥) = {
0.4(𝑥 + 0.5) + 0.3,   − 0.5 ≤ 𝑥 ≤ 0,
0.3,                                 otherwise,       

 (14) 

 𝑢 = 1, 𝑝 = 2. (15) 

As long as the discontinuity remains in the domain, the analytical solution is 

𝜌(𝑥, 𝑡) = {
0.4(𝑥 + 0.5 − 𝑡) + 0.3,   − 0.5 ≤ 𝑥 ≤ 0,
0.3,                                         otherwise,       

 (16) 

 𝑢 = 1, 𝑝 = 2 , (17) 

where the final time is adjusted for each mesh. We left two points between the discontinuity and the end of the 
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domain. This represents a severe test case for the WENO-type extrapolations. 

We also used the analytical solution at the left boundary ghost points and focused on efforts at the right 

boundary. For this problem, the properties are constant at the right boundary. Therefore, 

𝜌 = 0.3,
𝜕𝜌

𝜕𝑥
= 0 . (18) 

Since λ1 < 0, we imposed one boundary condition with eq. (10) and eq. (11) and extrapolated the other 

characteristic variables with the WENO-type extrapolation. Then, we employed a Taylor expansion to compute 

the characteristic variable at the ghost points and transformed back to the conservative ones. 

We show the density distribution in Figure 1 for the WENO-Z+ and WENO-type extrapolation of Tan et al. 

[4], where we can see good agreement between analytical and numerical solutions. We noticed that the WENO-

MR and WENO-type extrapolation of Lu et al. [7] were most sensitive to the discontinuity. One can change the 

linear weights and other parameters to improve the convergence or reduce the sensitivity to the discontinuity. 

 

 

Figure 1. Density distribution for the discontinuous test problem with WENO-Z+, the WENO-type extrapolation 

of Tan et al. [4], and mesh with 640 points. 

We remark that the WENO-type extrapolations have a dependency on the smaller stencil smoothness 

indicator. For Tan et al. [4] and Filbet and Yang [8] one have Δx2, and for Lu et al. [7] a constant multiplied to 

smoothness indicator of the next stencil. The dependency on the mesh size causes trouble with the self similarity 

and the dependency on other stencils may present difficulties if the shock is too close to the boundary. 

3.2 Two-dimensional Euler equations 

Our first 2D problem is another smooth test case for the Euler equations. The domain and initial condition 

were [0,1] 𝑥 [0,1] and 

𝜌(𝑥, 𝑦) = 1 + 0.5 sin(2𝜋𝑥) cos(2𝜋𝑦) , 𝑢 = 1, 𝑣 = −2, 𝑝 = 2. (19) 
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Then, the analytical solution is simply 

𝜌(𝑥, 𝑦, 𝑡) = 1 + 0.5 sin[2𝜋(𝑥 − 𝑡)] cos[2𝜋(𝑦 − 𝑡)] , 𝑢 = 1, 𝑣 = −2, 𝑝 = 2. (20) 

We employed the analytical solution at the upper boundary ghost points and periodic boundary conditions 

for left and right boundaries. By doing so, we focus on the WENO-type extrapolation at the lower boundary. 

Since the y-velocity is negative and constant, we have an out flow at the lower boundary. λ1,2,3 < 0 and λ4 may 

be positive or negative depending on the speed of sound. If λ4 = v + a > 0 one should impose one boundary 

condition. Otherwise, none. We imposed the boundary conditions with the exact solution, ILW strategy, and the 

WENO-type extrapolation in a similar way as before, i.e., from eq. (9) to eq. (13). 

We show the accuracy results in the Tab. 2 for the WENO-Z+ and WENO-type extrapolation of Tan et al. 

[4], where we can see that the design order was achieved. The other combinations between WENO and WENO-

type extrapolation also achieved the design orders. 

Table 2. L1, L2 and L∞ norms and its orders for the 2D smooth problem density and tf = 1. 

Δx L1 norm Order L2 norm Order L∞ norm Order 

1/10 8.90E – 03 -  1.53E – 02 -  4.74E – 02 -  

1/20 8.18E – 04 3.44 2.00E – 03 2.93 8.69E – 03 2.45 

1/40 2.96E – 05 4.79 1.26E – 04 3.99 1.11E – 03 2.97 

1/80 1.75E – 07 7.40 2.50E – 07 8.97 1.05E – 06 10.0 

1/160 5.39E – 09 5.02 7.68E – 09 5.02 3.49E – 08 4.91 

Our last test case is the double Mach reflection, where an inclined oblique shock is sent to a horizontal wall. 

This is an interesting test case because of the interaction between nonlinear phenomena and the wall. The domain 

and initial condition were [0,4] 𝑥 [0,1] and 

(𝜌, 𝑢, 𝑣, 𝑝) = {
(8, 4.125√3, −4.125, 116.5),    𝑥 <

1

6
+

𝑦

√3
,

(1.4, 0, 0, 2.5),                                otherwise.  

 (21) 

For this problem, we know the shock position at the upper boundary 

𝑠(𝑡) =
1

6
+

(1 + 20𝑡)

√3
. (22) 

Therefore, we imposed constant values at the upper boundary regarding the shock position 

(𝜌, 𝑢, 𝑣, 𝑝) = {
(8, 4.125√3, −4.125, 116.5),    𝑥 < 𝑠(𝑡),    

(1.4, 0, 0, 2.5),                                otherwise.
 (23) 

At the left boundary we imposed constant values to the left of the shock and at the right boundary we 

employed a lower-order extrapolation. Then, we can concentrate in testing the WENO-type extrapolation at the 

lower boundary wall. We choose this boundary because the nonlinear phenomena interacted with it during the 

simulation. 

Since v = 0 at the wall, we have λ1 = v – a < 0, λ2,3 ≈ 0, and λ4 = v + a > 0. That is, we need to impose one 

boundary condition (Lu et al. [7])  

𝑉4 =
−𝑟31𝑉1 − 𝑟32𝑉2 − 𝑟33𝑉3

𝑟34

 , (24) 

𝜕𝑉4

𝜕𝑦
=

−𝑟31(𝑣 − 𝑎)(𝜕𝑉1 𝜕𝑦⁄ ) − 𝑟32𝑣(𝜕𝑉2 𝜕𝑦⁄ ) − 𝑟33𝑣(𝜕𝑉3 𝜕𝑦⁄ )

𝑟34(𝑣 + 𝑎)
 . (25) 

The other derivatives are available through the WENO-type extrapolation. We again employed a Taylor 

expansion to compute the ghost points. Then, changed back to the conservative variables. 

We show the density color map and contours from 1 to 23 for the WENO-Z+ and WENO-type extrapolation 

of Tan et al. [4] in Fig. 2, where we can see that the shock and non-linear phenomena were well captured. Other 

combinations also presented a good representation of flow features. Exception is made for the WENO-type 



Verification of WENO-type extrapolation with different WENO schemes 

CILAMCE-PANACM-2021 
Proceedings of the joint XLII Ibero-Latin-American Congress on Computational Methods in Engineering and 

III Pan-American Congress on Computational Mechanics, ABMEC-IACM  

Rio de Janeiro, Brazil, November 9-12, 2021 

extrapolation of Filbet and Yang [8] that was most sensitive to the shock. 

 

 

Figure 2. Density color map and contours for the double Mach reflection with WENO-Z+, the WENO-type 

extrapolation of Tan et al. [4], and mesh with 1200 x 300 points. 

4  Conclusions 

Test problems of high order and resolution at boundaries were verified using WENO-type extrapolation 

combined with four different WENO schemes: WENO embedded Z, WENO embedded JS, WENO-MR and 

WENO-Z+. 

 For the first test, a 1D smooth Euler equation, our results showed that all four combinations were able to 

achieve the desired accuracy. On the second test, 1D Euler equation with discontinuities, the WENO-Z+ and 

WENO-type extrapolation of Tan et al. [4] had a good agreement between analytical and numerical solutions. In 

this particular case, we observed that the WENO-MR with WENO-type extrapolation of Lu et al. [7] were more 

sensitive to discontinuities than the others. The results of the third test, a 2D smooth Euler equation, proved that 

the combinations we employed were accurate. As for the last test, 2D Euler equation with discontinuities, we were 

able to acquire desired results in capturing the non-linear phenomena and flow features, with the exception of the 

WENO-type extrapolation of Filbet and Yang [8], that was most sensitive to the shock in this case. Although we 

did not test, the WENO-type parameters can be changed to improve the convergence. 

Overall, we show the design accuracy is being reached for smooth problems, and that the discontinuities and 

nonlinear phenomena are well captured for new WENO-type schemes, ensuring high order and resolution at 

boundaries. We also identified that one can improve the WENO-type extrapolations by reducing or eliminating 

the dependency of nonlinear weights on smaller stencils. 
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