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Abstract. In the present work, a formulation based on the Characteristic Based Split (CBS) method is proposed 

for applications in fluid-structure interaction (FSI) and free-surface flow problems. The flow fundamental 

equations are discretized here using the CBS method in the context of the Finite Element Method (FEM), where 

linear tetrahedral elements are employed. A semi-implicit scheme is used, where the momentum equations are 

solved explicitly while the mass equation is solved implicitly through a Poisson equation. FSI is taken into 

account considering a partitioned coupling model and the rigid-body approach, considering an Arbitrary 

Lagrangian-Eulerian (ALE) kinematic formulation. The resulting dynamic equilibrium equation is solved using 

the Generalized- method. Free-surface flows are analyzed using the Level Set Method (LSM), considering a 

two-phase medium. Classic free-surface and FSI problems are simulated in order to evaluate the present 

formulation, comparing results obtained here with experimental results and predictions obtained with other 

numerical formulations available. It is concluded that the proposed numerical tool is able to obtain results 

consistent with the phenomena involved. 
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1  Introduction Equation Chapter 1 Section 1 

Floating structures have been used in different areas of Engineering. There are a lot of applications in this 

area, including ship hydrodynamics (Biran and López-Pulido [1]), offshore structures (Karimirad et al. [2]), and 

even buildings, bridges and harbors (Wang and Wang [3]). All these applications cannot be imagined without an 

intensive use of computers and numerical methods (Sharma et al. [4]). 

Unfortunately, the numerical treatment of Fluid-Structure Interaction (FSI) problems, especially those in 

the presence of free surfaces may pose several modeling challenges, as pointed by Sanders et al. [5] and Calderer 

et al. [6]. As a result, many different types of methodologies and ways of modeling the problem can be 

developed. Some of them are listed in Sharma et al. [4], as well as some key challenges in computer applications 

for ship and floating structure design and analysis. 

In this work, a numerical model is proposed considering the Navier-Stokes and mass conservation 

equations, which are discretized using the semi-implicit form of the Characteristic-based Split (CBS) Method for 

incompressible flows and Newtonian fluids. In the present formulation, the momentum equations are solved 

explicitly while the mass equation is solved implicitly through a Poisson equation. Free surfaces are modeled 

using the Level Set Method (LSM) and a two-phase medium approach for the flow field. The system of flow 

equations obtained here is discretized using the Finite Element Method (FEM), where linear tetrahedral finite 

elements are utilized. Finally, the fluid-structure interaction (FSI) problem is solved using a partitioned coupling 

model and a rigid-body approach for the immersed structure. 
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2  Flow Fundamental Equations and Numerical Model 

2.1 Flow Dynamics and Free Surface Modeling 

The momentum and mass conservation equations are utilized here considering the incompressible flow 

hypothesis and an arbitrary Lagrangian-Eulerian description (Zienkiewicz et al. [7]). By applying the semi-

implicit CBS Method to the system of flow fundamental equations, one obtains (see Nithiarasu et al. [8]): 
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where xj denote coordinate directions in an orthogonal Cartesian coordinate system, vi are components of the 

flow velocity vector, wi are components of the mesh velocity vector, p is the pressure, ij are components of the 

viscous stress tensor, gi are components of the gravity acceleration vector,  is the fluid specific mass, t is the 

time increment, while 1  and 2  are model parameters with values varying from 0.5 to 1.0 and 0 to 1, 

respectively. Notice that 3
rd

 order terms or higher are disregarded and a split operation is performed considering 

the momentum equations, such that the flow velocity field is decomposed into * **
i i iv v v     in a time 

interval [tn, tn+1]. The FEM is then applied to the discretized equations to solve the flow problem, where linear 

tetrahedral elements are utilized. 

For free surface modeling, a biphasic flow approach is adopted using the Level-Set Method proposed by 

Osher and Sethian [9]. In this method, a scalar distance function with signal  is used, which is determined with 

the following equation: 
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Figure 1. Level Set function to identify ascending gas bubbles in a fluid (Pochet et al. [10]) 

Figure 1 shows a typical scalar field , where one can observe that the total volume (area)  is composed 

by two fluids: a liquid (water) region, where  > 0, and a gas (air) region, where  < 0, while the interface is 

defined by  = 0 and represented by the boundary lines F. The fluid physical properties are then defined as 

functions of , as follows: 

      1 2 1 .           (5) 

being 1 and 2 the fluid densities corresponding to fluids 1 and 2, respectively, and H () is a “smoothed” 
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Heaviside function, given by: 
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where  is the half-thickness of the transition zone, normally defined as LS x   , where x is the 

characteristic dimension of an element in the interface region and LS  is a model parameter with values varying 

between 1 and 2. 

The numerical solution of Eq. (4) does not guarantee that  will remain as a distance function (i.e. 

1  ), thus a reinitialization procedure is necessary to ensure this condition (see Sussman et al. [11]): 
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where  is an auxiliary function, whose initial position is given by: 

    0 , 0 , ,t   x x   (8) 

while the smoothed function S(0) is given by: 

  
 

0
0

22
0 0

,S



  


 

  (9) 

where  is an artificial time variable from which one can define a steady state for  in each time instant t of the 

numerical analysis. The steady state is usually obtained up to / iterations, being  defined by: 

 ,
x

 




   (10) 

where  is a safety factor that assumes values between 0 and 1. 

2.2 Rigid Body Dynamics and FSI Modeling 

The structure is idealized in this work as a rigid body, which is a reasonable assumption, considering that 

the displacements and rotations generated by the flow are much larger than the body deformations. The dynamic 

equilibrium equation of the body is given by: 

 .c c c c
S S S S S S S  M U C U K U Q   (11) 

 

Figure 2. Solution algorithm for a FSI problem (Braun [12]). 

where SM  is the mass matrix, SC  is the damping matrix, SK  is the stiffness matrix and 
c
SU , 

c
SU  and 

c
SU  are 

the generalized displacement, velocity and acceleration vectors, respectively, while 
c
SQ  is the force vector. The 

subscript S is related to the structure, and the superscript c is related to the center of gravity of the structure. 
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A partitioned scheme is utilized here for the FSI coupling, where the flow and structural domains are solved 

sequentially by imposing kinematic compatibility and equilibrium conditions at the fluid-structure interface. A 

flowchart of the FSI algorithm adopted in this work is presented in Figure 2. Additional information on the FSI 

model employed in the present investigation may be found in Braun [12]. 

3  Applications 

3.1 Broken Dam Problem 

The present example is utilized to verify the numerical model proposed in this work when flow problems 

with free surfaces are considered. This application was studied first by Martin and Moyce [13] using 

experimental techniques. In this problem, a column of water falls over a flat horizontal surface. Figure 3 shows a 

schematic view of the problem, along with the mesh proposed in this study. 

 

Figure 3. (a) Schematic view of the 3D broken dam problem (Lin et al. [14]) and (b) the mesh proposed by this 

study. 

The size of the computational domain employed here is defined as 5a  1.25a  a, being a = 0.0571504 m, 

along the x, y and z directions, respectively. The mesh used consists in 1,377,120 tetrahedral elements, 

distributed in a non-uniform way. The boundary conditions used are a no slip wall at the bottom surface and 

free-slip walls at the others surfaces. The smallest element, located next to the walls, has a length of 3.9410
-4

 m. 

Figure 4 shows results obtained here referring to the surge s and remaining height h, which are compared with 

predictions obtained experimentally by Martin and Moyce [13] and numerically by Lin et al. [14]. One can see 

that a good agreement is obtained with respect to the references results, especially when the water column height 

h is considered. Notice that a dimensionless time tg = (a/g)
0.5

 is adopted for both graphics. 

 

Figure 4. Surge (left) and remaining height (right) for the broken dam problem. 

The evolution of the free surface over time is shown in Figure 5 for some dimensionless time instants, 

where it is observed that physical aspects of the flow are reproduced accurately. 
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Figure 5. Free surface configurations for some dimensionless time instants: (a) t = 0.432; (b) t = 1.129; (c) t = 

1.641; (d) t = 1.941. 

3.2 Transient heave oscillation of a floating cylinder 

The oscillation of a buoyant body on the water surface is investigated in the present application. This 

problem was proposed by Zandergen et al. [15], and later studied by Donescu and Virgin [16] and Sanders et al. 

[5], where a circular cylinder is considered in a tank of water, with density equal to half of the water density, so 

that the equilibrium position corresponds to a configuration where the body is approximately half submerged. 

The circular cylinder presents a 2 m radius, which is released from an initial position (0.5 m above the water 

surface) in the middle of a tank with 100 m length and 4m depth. Free-slip conditions are imposed as boundary 

conditions for all the surfaces of the domain and also zero pressure for the top surface. The physical properties 

utilized in the present simulations are defined as follows: for the liquid phase,  = 10
3
 kg/m³ is the water density 

and  = 10
-3

 kg/m.s is the water viscosity; for the gaseous phase,  = 1 kg/m³ is the air density and  = 2x10
-5

 

kg/m.s is the air viscosity. Information on the meshes used in this work are listed in Table 1, including the 

smallest element length x, which are localized next to the fluid-structure interface and around the free surface.  

Figure 6 shows a schematic view, the details of mesh number 3 used in this study, and also the results 

obtained for heave (vertical displacement) decay, where one can see that predictions related to the three meshes 

proposed here agree very well with the numerical results presented by Donescu and Virgin [16]. 

 

Figure 6. (a) Schematic view (based on Donescu and Virgin [16]); (b) mesh 3 details; and (c) heave decay results 

for the buoyant cylinder problem. 
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Table 1. Meshes used in the problem of floating cylinder.  

Mesh x (m) Elements

1 0.0264 406,317 

2 0.022 494,073 

3 0.0184 602,664 

3.3 Roll motion of a floating block 

The present example is based on the experimental study carried out by Jung et al. [17], where a rectangular 

body with 0.3 m length and 0.1 m height is half submerged into a 0.9 m deep water tank and constrained to only 

rotate around its center of mass, as shown in Figure 7 (along with the mesh proposed by the present work). The 

rectangular block is released from an initial position on the water surface with a 15° angle and the tank is 10 m 

long. The density of the rectangular block is 1180 kg/m³. The boundary conditions used are free-slip walls at all 

surfaces and also zero pressure for the top surface. 

 

Figure 7. (a) Schematic view of the rectangular block in a water tank, initial position (Ghasemi et al. [18]) and 

(b) mesh proposed by the current work. 

Figure 8 shows results referring to the roll angle measured over the time, where the present predictions are 

compared with experimental and numerical results obtained from other authors. Notice that the present 

simulation was carried out considering a computational mesh with 466,164 elements and smallest element length 

around 1.1610
-3

 m, which are found next to the fluid-structure interface and along the free surface. One can 

observe that the present predictions can reproduce the period of oscillation obtained experimentally, but the 

amplitude of the oscillations decays faster in the experimental results. This behavior was also observed in other 

studies, such as Ghasemi et al. [18], Chen et al. [19], and from numerical simulations performed with the 

commercial software Fluent, using a mesh with 192,370 elements and smallest element length of 1.2510
-3

 m. 

This smaller damping can be explained in some extend owing to the absence of extra friction damping from the 

physical devises used in the experiment studies (Chen et al. [19]). Other explanation may be found in the 

turbulent viscous dissipation, which is not fully captured in 2D simulations (Ghasemi et al. [18]). 

 

Figure 8. Rotational oscillations of a rectangular block floating in a water tank. 
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4  Conclusions 

A finite element formulation based on the CBS Method was proposed in this work for fluid-structure 

applications with free-surface flows. Results obtained here demonstrate that the implemented methodology is 

able to reproduce complex phenomena associated with two-phase flows and their interaction with immersed 

structures, taking into account the good agreement observed with respect to other experimental and numerical 

predictions. 
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