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Abstract. Nonlinear ultrasonics is effective in characterizing early-stage damages in solids. Interaction of a single 

frequency (f) elastic wave with early-stage damages like dislocation substructures, micro-cracks, and micro-voids, 

etc., generates higher harmonics (2f, 3f, 4f, 5f,..). In theoretical and computational studies early-stage damages are 

modeled as nonlinear material models. Material models such as quadratic, cubic, and hysteretic nonlinearities are 

commonly implemented in nonlinear wave propagation studies. To understand the interaction of the ultrasonic 

wave with micro-cracks a pinched hysteretic nonlinearity looks the best fit as it can capture the nonlinear contact 

mechanisms like opening and closing of micro-cracks which is also known as crack clapping and sliding at the 

interfaces. One dimensional spatial domain is discretized as a long chain of spring-mass elements. Reid’s pinched 

hysteretic elements are used in a long chain of spring-mass elements for the numerical study of the nonlinear wave 

propagation through symmetric hysteretic material. Interaction of a single frequency elastic wave with Reid’s 

symmetric hysteretic nonlinearity generates only odd harmonics (3f, 5f, 7f,…). Nonlinear reflected waves from 

both the free and fixed end cases contain only odd harmonics. After reflection, nonlinear wave transfers energy 

from 5th and 7th harmonics to 3rd harmonics. Pinched hysteretic loops are observed corresponding to both the 

incident and reflected wave. The pinching at the origin of the hysteretic loops gets opened due to the reflection of 

nonlinear waves. Evolving pinched hysteretic loops are observed due to Gaussian pulse as an input pulse whereas 

repetitive pinched hysteretic loops are observed due to sine pulse as an input pulse. In one-way two-wave mixing, 

both incident and reflected waves from free and fixed ends contain sum and difference frequency harmonics along 

with the corresponding odd harmonics of input frequencies. Reflected waves transfer energy from the frequency 

combinations present near 5th harmonics to frequency combinations present near 3rd harmonics. Minor hysteretic 

loops due to wave mixing are observed within the major pinched hysteresis loops. As this numerical study is simple 

in understanding, formulation, and implementation, it will help to solve inverse problems in nonlinear waves with 

less computational resources and within a short time. 

Keywords: nonlinear waves, wave-mixing, pinched hysteresis, nonlinear ultrasonics 

1  Introduction 

In practice, mechanical components and structures are subjected to complex loadings such as fatigue and 

creep most of the time. Fatigue and creep degrades the material properties continuously. This degradation is known 

as damage inside solid materials. The damages are mainly considered as early-stage damages at micro-scale and 

macro-scale damages at later stages of the loading [1]. In structural health monitoring, damage detection is an 

important step. Linear ultrasonics can be used effectively to detect the damage level and type of damages at a 

macro-scale, but it is insensitive to micro-scale damages. It has been reported by various studies that the nonlinear 

ultrasonics technique has the potential to detect microscale damages, which will be helpful to get an early warning 

of the material damage. Early-stage damages take nearly 80-90% of the total life of the components when the 

metallic components are under fatigue and creep loading [2]. In metals, the early-stage damage includes an 

appearance of the dislocations and combining dislocations to generate dislocation substructures like veins and 
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persistent slip bands, and these substructures get accumulated at the grain boundaries to introduce local plasticity, 

and then they produce micro-cracks [3]. In nonlinear ultrasonics, interaction of a single frequency (f) ultrasonic 

pulse generates higher harmonics (2f, 3f, 4f, 5f,..), also known as a harmonic generation. Theoretical, 

computational, and experimental studies showed that the amplitudes of the higher harmonics can be directly 

correlated to the damage level present in the solid [2]. 

In theoretical and computational studies early-stage damages are modeled as quadratic, cubic, and hysteretic 

nonlinear material. Perturbation methods are used to get an approximate analytical solution of the incident or 

forward propagating waves in nonlinear materials. For reflected waves in quadratic nonlinear material theoretical 

solution is given by Bender et.al [4]. As obtaining an analytical solution for the reflected nonlinear waves in 

hysteretic nonlinear material is challenging, a numerical study on the reflection of the nonlinear wave in hysteretic 

material is conducted. Understanding the interaction of ultrasonic waves mainly with micro-cracks by modeling 

them using numerical methods like finite difference method, finite element method, finite integration method in 

2-D domain takes significant computational power and time in comparison with 1-D models and this proposed 

implementation. The nonlinearity introduced due to micro-cracks is also known as contact acoustic nonlinearity 

(CAN) because of closing and opening of micro-cracks and full/partial sliding at the contact interface as shown in 

many simulations [5-9] and experiments [5],[10-11]. To reduce computational efforts and the complexity of the 

problem formulation and implementation, here in this research study a one-dimensional domain is discretized as 

the long chain of spring-mass elements along with Reid’s hysteretic elements [12] added in parallel to capture the 

pinched hysteretic behavior due to micro-cracks (Fig. 1). In this article, the reflection of the nonlinear waves in 

pinched rate-independent Reid’s hysteretic material is studied numerically. In section 2 numerical model is 

presented, in section 3 results are discussed in detail. Conclusions are drawn in section 4. 

2  Numerical model 

 

 

 

 

 

 

Figure 1. Schematic of long spring-mass chain with hysteretic elements 

 

A one-dimensional domain is assumed as a long chain of spring-mass elements (Fig. 1) with masses m1 = 

m2 = …. = m and stiffness k1 = k2 = … = k to model linear material. Hysteretic nonlinearity is added in parallel to 

linear springs by adding hysteretic elements H1 = H2 = … = H. Reid’s hysteretic element [12] is considered in this 

study, as most of the micro-cracks closing and opening behavior also known as crack clapping phenomenon can 

be well characterized by the triangular hysteretic curves [13]. The force of Reid’s single hysteretic element H is 

given as follows 

 𝑧 = 𝑘𝐻[𝜂 𝑠𝑔𝑛(𝑢𝑢̇)𝑢] (1) 

 

The input displacement u is given at the left end of the chain as shown in Fig. 1. In experiments, both the sinusoidal 

and Gaussian pulses are used as shown in Fig. 2(a) and Fig. 2(c) for single frequency wave input given as 

 

 u = A sin(2𝜋𝑓𝑡) (2) 

for sine pulse (Fig. 2(a)) and 

 u = 0.5 A [1 − cos(2𝜋𝑓𝑡 𝑁⁄ )] sin(2𝜋𝑓𝑡) (3) 

 

for Gaussian pulse (Fig. 2(c)). To avoid unwanted harmonics generated during nonlinear ultrasonic experiments 

due to system nonlinearity wave-mixing technique is preferred. A single pulse with two input frequencies (Fig. 

2(b) and Fig. 2(d)) is sent from the left end domain. This is also known as one-way two-wave mixing. From now 

onwards terms wave mixing and one-way two-wave will be used interchangeably. The expression for wave mixing 

of sinusoidal waves (Fig. 2(b)) is given as 

 u = 𝐴1 sin(2𝜋𝑓1𝑡) + 𝐴2 sin(2𝜋𝑓2𝑡) (4) 
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Similarly, we can write for mixed Gaussian pulse (Fig. 2(d)) as 

 

 

u = 0.5 𝐴1 [1 − cos(2𝜋𝑓1𝑡 𝑁⁄ )] sin(2𝜋𝑓1𝑡) 

    + 0.5 𝐴2 [1 − cos(2𝜋𝑓2𝑡 𝑁⁄ )] sin(2𝜋𝑓2𝑡)  

 

(5) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) Single-frequency sine b) Mixed sine c) Single-freq. Gaussian d) Mixed Gaussian 

Figure 2. Input short pulses 

 

A sufficient number of masses (800) are considered to avoid reflections of the waves at the left end of the chain. 

Two different case studies are carried out: a) free right end and b) fixed right end of the chain. The displacement 

of the end mass is kept zero in the case of the fixed end study and kept free in the case of the free end study. 

Stability and convergence of the numerical study are ensured by selecting appropriate time stepping loosely based 

on the CFL condition. MATLAB inbuilt ode solver is used to solve the system of equations. The material properties 

used in this study are noted in Tab. 1. The incident and reflected waves are noted independently and then analyzed 

for frequency response and hysteretic curves at 400th mass. The results are discussed in the next section. 

Table 1. Material properties used in the numerical study 

m (kg) k (MN/m) kH (KN/m) 𝜂 

1.3e-6 38.5 38.5 0.3 

3  Results and Discussion 

The results for fixed end and free end cases are plotted as frequency responses and hysteretic curves. In all 

the frequency responses a power spectrum is plotted with dB scale on the y-axis and frequency on the x-axis (e.g. 

Fig. 3(a)). Normalized input displacement versus normalized hysteretic force is plotted to understand the nature 

of the hysteretic curves as seen in Fig. 3(b). Frequency responses have significant importance in the acoustics 

community to understand the early-stage damage level and hysteretic curves have importance mainly in the applied 

mechanics community to understand the type of hysteresis and local damages like here in this particular study the 

focus is on hysteresis due to micro-cracks. 

3.1 Free end 

Frequency response for a single frequency (f = 0.1 MHz) incident sine pulse (Fig. 2(a)) at 400th mass 

shows the generation of only odd harmonics (3f, 5f, 7f,…) as seen from Fig. 3(a). Triangular pinched hysteretic 

curves are observed (Fig. 3(b)). Similarly, in the case of reflected wave at 400 th mass only odd harmonics are 

present in frequency response (Fig. 3(c)). Interestingly, the opening of the previously pinched hysteretic loop is 

observed at the center (Fig. 3(d)), but the loops are pinched at other positions resulting in three closed loops and 

all the loops are symmetric about the diagonal of the graph (z = u). When a single frequency Gaussian pulse (Fig. 

2(c)) is sent through the hysteretic material, both the incident (Fig. 3(e)) and reflected (Fig. 3(g)) waves contain 

only odd harmonics. The frequency response of Gaussian pulse input has sufficiently fewer small oscillations than 

sine pulse input and broader distribution near the peaks of the harmonics as the Gaussian pulse is a broadband 

pulse. Fig. 3(f) shows evolving triangular pinched hysteretic loops of an incident wave at 400th mass from smaller 

loop size to larger loop size then again back to the smaller loop size. Similarly, evolving hysteretic loops of 

reflected waves are observed where the pinching at the center is opened and three closed loops are generated with 

pinching at the other two locations. Most importantly, comparing amplitudes of higher harmonics of the incident 
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wave and reflected wave (comparing Fig. 3(a) and Fig. 3(c) or Fig. 3(e) and Fig. 3(e)), the amplitudes of 5 th and 

7th harmonics of the incident wave decreases when we receive the reflected wave at the same location (400th mass), 

but the amplitude of 3rd harmonics of the reflected wave increases in comparison with the 3rd harmonics of the 

incident wave. From this observation, we can conclude that upon reflection the energy from the 5 th and 7th 

harmonics gets transferred to only 3rd harmonics (first odd harmonics). 

  

    
a) Incident sine wave 

frequency response 

c) Reflected sine wave 

frequency response 

e) Incident Gaussian wave 

frequency response 

g) Reflected Gaussian wave 

frequency response 

    
b) Hysteretic curves due to 

incident sine wave 

d) Hysteretic curves due to 

a reflected sine wave 

f) Hysteretic curves due to 

incident Gaussian wave 

h) Hysteretic curves due to 

reflected Gaussian wave 

 

Figure 3. Frequency response and hysteretic curves at 400th mass due to single-frequency wave input in 1-D 

rod with a free end 

 

In one-way two-wave mixing nonlinear ultrasonic testing, a single pulse with two input frequencies is 

sent from only one side of the spatial domain (left end of the chain). To conduct same one-way two-wave mixing 

numerical experiment, mixed pulse with two input frequencies (f1 = 0.06 MHz and f2 = 0.1 MHz) is sent (Fig. 1(b) 

and Fig. (d)). Here in this particular study the amplitude ratio 𝐴1 𝐴2 = 3⁄  is used in Eq. 5. This can be seen in the 

frequency response (note that this is power spectrum) plot shown in Fig. 4(a), where amplitude at 0.06 MHz 

frequency is higher than the amplitude at 0.1 MHz frequency. 

 

Table 2. Frequency combinations (105 Hz) due to one-way two-wave mixing (f1 = 0.06 MHz and f2 = 0.1 MHz) 

2f1 - f2 = 0.2 2f1 + f2 = 2.2 6f1 - f2 = 4.6 6f1 + f2 = 2.6 3f1 = 1.8 11f1 = 6.6 3f2 = 3.0 

f1 - 2f2 = 1.4 f1 + 2f2 = 2.6 f1 - 6f2 = 6.6 f1 + 6f2 = 5.4 5f1 = 3.0 13f1 = 7.8 5f2 = 5.0 

4f1 - f2 = 1.4 4f1 + f2 = 3.4 8f1 - f2 = 3.8 8f1 + f2 = 5.8 7f1 = 4.2  7f2 = 7.0 

f1 - 4f2 = 3.4 f1 + 4f2 = 4.6 f1 - 8f2 = 7.4 f1 +8 f2 = 8.6 9f1 = 5.4  9f2 = 9.0 

 

In general, due to one-way two-wave mixing sum (f1 + f2, 2f1 + f2, f1 + 2f2, 3f1 + f2, f1 +3 f2, …) and 

difference (f1 - f2, 2f1 - f2, f1 - 2f2, 3f1 - f2, f1 -3 f2, …) frequencies are observed along with the corresponding higher 

harmonics of the input frequencies (2f1, 2f2, 3f1, 3 f2, 4 f1, 4f2, 5f1, 5 f2, 6 f1, 6 f2, …). One-way two-wave mixing in 

Reid’s pinched hysteretic nonlinear material gives only those sum and difference frequency combinations whose 

net difference is an odd multiplier e.g., 2f1 - f2 but not 3f1 - f2. All the observed possible sum and difference 

frequencies along with the only odd higher harmonics corresponding to both the input frequencies are noted in 

Tab. 2 and can be verified from the frequency responses shown in Fig. 4(a), Fig. 4(c), Fig. 4(e), and Fig. 4(g) for 

both incident and reflected waves. Triangular hysteretic pinched loops due to incident waves are observed as seen 

from Fig. 4(b). Comparing hysteretic loops due to single-frequency incident wave (Fig. 3(b)) with hysteretic loops 

due to mixed incident wave (Fig. 4(b) and Fig. 4(f)) shows that, additional small loops [14] are introduced due to 

mixing. Hysteretic loops due to reflected wave show opening of the pinching at the center and introducing two 

more pinching points (Fig. 4(d) and Fig. 4(h)). 
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a) Incident mixed sine wave 

frequency response 

c) Reflected mixed sine 

wave frequency response 

e) Incident mixed Gaussian 

wave frequency response 

g) Reflected mixed 

Gaussian wave frequency 

response 

    
b) Hysteretic curves due to 

an incident mixed sine 

wave 

d) Hysteretic curves due to 

reflected mixed sine wave 

f) Hysteretic curves due to 

incident mixed Gaussian 

wave 

h) Hysteretic curves due to 

reflected mixed Gaussian 

wave 

 

Figure 4. Frequency response and hysteretic curves at 400th mass due to one-way two-wave mixing in 1-D rod 

with a free end 

3.2 Fixed end 

Similar to the free end case, the frequency responses of both single frequency incident and reflected waves 

contain only odd harmonics. After reflection, a decrease in amplitudes of the 5th and 7th harmonics shows energy 

transfer from 5th and 7th harmonics to only 3rd harmonics (Fig. 5(a), Fig. 5(c), Fig. 5(e), and Fig. (g)). As the other 

end is fixed, the wave will reflect with 1800 phase difference. Due to phase change, the hysteretic loops of the 

reflected wave are rotated by 900 in hysteretic curves space (Fig. 5(d) and Fig. 5(h)). Similar to the free end case 

in one-way two-wave wave mixing, sum, and difference frequency combinations are noted along with the 

corresponding odd harmonics as mentioned in Tab. 2 and as seen from Fig. 6(a), Fig. 6(c), Fig. 5(e), and Fig. 5(g). 

Due to 1800 phase change, the hysteretic loops of reflected waves are rotated by 900 in a hysteretic curves space. 

  

    
a) Incident sine wave 

frequency response 

c) Reflected sine wave 

frequency response 

e) Incident Gaussian wave 

frequency response 

g) Reflected Gaussian wave 

frequency response 

    
b) Hysteretic curves due to 

incident sine wave 

d) Hysteretic curves due to 

a reflected sine wave 

f) Hysteretic curves due to 

incident Gaussian wave 

h) Hysteretic curves due to 

reflected Gaussian wave 

 

Figure 5. Frequency response and hysteretic curves at 400th mass due to single-frequency wave input in 1-D 

rod with a fixed end 

 

To get quantitative insight into frequency responses, magnitudes of the higher harmonics amplitudes are 

converted from dB to power units, and the ratios of the harmonic amplitudes of the reflected and incident waves 

are defined as R/I as seen from legends of Fig. 7 and Fig. 8. The fundamental amplitude ratio in free and fixed end 
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cases is nearly the same for both the sine and Gaussian input pulses. The amplitude ratio (R/I) at the 3rd harmonics 

(first odd harmonics) is nearly 3.5 times higher than the fundamental amplitude ratio. The amplitude ratio of the 

7th harmonics is nearly 1.5 times higher than the fundamental amplitude ratio. Interestingly, the amplitude ratio of 

the 5th harmonics (second odd harmonics) is less than (nearly 0.5 times) the fundamental amplitude ratio. The 

amplitude ratios for the fixed end case at 3rd, 5th, and 7th harmonics are slightly lesser than the amplitude ratio of 

the free end case. Amplitude ratios at 3rd harmonics due to sine pulse input are lesser than the Gaussian pulse input 

but it’s the other way round at 5th and 7th harmonics. 

 

    

a) Incident mixed sine wave 

frequency response 
c) Reflected mixed sine 

wave frequency response 

e) Incident mixed Gaussian 

wave frequency response 

g) Reflected mixed 

Gaussian wave frequency 

response 

    
b) Hysteretic curves due to 

an incident mixed sine 

wave 

d) Hysteretic curves due to 

reflected mixed sine wave 

f) Hysteretic curves due to 

incident mixed Gaussian 

wave 

h) Hysteretic curves due to 

reflected mixed Gaussian 

wave 

 

Figure 6. Frequency response and hysteretic curves at 400th mass due to one-way two-wave mixing in 1-D rod 

with a fixed end 

 

In one-way two-wave mixing, a wide range of amplitude ratios (R/I) are obtained for sum, difference, 

and corresponding odd harmonics as shown in Fig. 8. The amplitude ratios at fundamental input frequencies (0.06 

and 0.1 MHz) are of the same value in fixed and free end cases for both sine and Gaussian pulse inputs. Amplitude 

ratios up to 5th harmonics due to sine pulse are slightly less in magnitude than the amplitude ratios due to Gaussian 

input pulse. Two maximum value peaks are observed at 0.34 and 0.66 MHz frequencies in Gaussian input pulse. 

Interestingly, the amplitude ratio at 0.02 MHz (subharmonics) due to Gaussian pulse is nearly 2 times higher than 

the amplitude ratio due to sine input pulse. Comparing Fig. 7 and Fig. 8 we can broadly conclude that both in a 

single wave and wave-mixing cases the energy from the 5th harmonics and its neighborhood harmonics gets 

transferred to 3rd harmonics and the neighborhood harmonics due to reflected waves.  Understanding such energy 

transfer is very important and helpful for the selection of input frequencies and targeting dominant frequency 

combinations due to one-way two-wave mixing. 

 
 

 

Figure 7. Reflected to incident (R/I) wave amplitude 

ratios corresponding to observed harmonics at 400th 

mass due to single-frequency wave input 

Figure 8. Reflected to incident (R/I) wave amplitude 

ratios corresponding to observed harmonics at 400th 

mass due to one-way two-wave mixing 
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4  Conclusions 

Interaction of a single frequency wave with Reid’s hysteretic material generates only odd harmonics both in 

the case of an incident and a reflected wave from a free and fixed end. The hysteretic curves obtained are pinched 

at the center for an incident wave but in the case of the reflected wave, the pinching is opened at the center resulting 

in adding two pinching points at positions other than the center. The orientation of hysteretic loops of reflected 

waves at the fixed end gets rotated by 900 in comparison with the hysteretic loops due to incident waves. Sum and 

difference frequencies along with the corresponding odd harmonics are observed due to one-way two-wave mixing 

in pinched hysteretic material. The amplitude ratio gives more insight into the redistribution of the harmonic energy 

within the incident and reflected pulses. In a single frequency input pulse, energy from the 5 th and 7th harmonics 

is transferred to the 3rd harmonics as the wave gets reflected. The amount of energy transferred from only the 5th 

harmonics (second odd harmonics) to the 3rd harmonics (first odd harmonics) is significant. Similarly, in wave 

mixing the energy from the frequency combinations present near 5th harmonics is transferred to frequency 

combinations present near 3rd harmonics when a wave gets reflected in a nonlinear pinched hysteretic material. 

Simple formulation, fewer computational resources required and short computational time makes this study 

useful in solving nonlinear inverse problems in nonlinear ultrasonics for in-situ and ex-situ structural health 

monitoring applications. Initial quick computational studies will help in the selection of input pulse amplitude and 

frequency combinations and target the possible frequency combinations for nonlinear pulse-echo experiments in 

pinched hysteretic materials. 
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