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Abstract. We formulate and solve a time-harmonic inverse scattering problem to estimate the interfacial defect
distribution at an adhesion interface of a composite plate. We use the incident field that mostly interact with such
defects and assume prior knowledge of the material properties of each layer of the laminate. We model the adhesion
interfaces using the Quasi-Static-Approximation, where approximates it by a set of tangential and normal springs,
and allow the interfacial stiffness to depend upon the position along the interface. To solve the direct problem, the
interfacial defect distribution is generated by a prior of smooth stochastic field. In addition, we develop a deep
learning neural network, using the reflected signal as input, to solve the formulated inverse problem. We validate
our implementation and evaluate the presented method’s performance for noisy input data and different defect
distribution scenarios with the aid of numerical simulations. From the obtained numerical results, we may say
that the proposed method is robust to the presence of noise and has the potential to detect and classify interfacial
defects.
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1 Introduction

Techniques to estimate the damage field in composites are very desirable in structural health monitoring of
laminated structures [1–3]. Over the last years, countless computational models have been developed to predict
damage evolution and failure in composite materials [3–5]. In particular, deep learning (DL) has recently shown
exceptional performance on object classification and segmentation tasks in computer vision. Motivated by these
results, many works in literature are applying DL to several research fields including inverse problems [3, 6–8].

According to Mass [9], one of the hottest topics discussed over the last few years in literature is the use
of neural networks for large data applications. Furthermore, deep learning is achieving outstanding results in
large-scale nonlinear problems such as classification tasks in computer vision and speech recognition. This en-
couraged researchers to use deep learning networks to solve inverse problems. Theoretically, when comparing
inverse problems defined by analytical models with data-driven approaches, such as deep learning, it is expected
that data-driven approaches have some advantages, e.g., an incomplete model of the underlying physical or engi-
neering system or if the search for a parameter x is actually restricted to a characteristic subset, which, however,
escapes precise mathematical modeling. A simple deep learning inverse approach consists on considering a basic
problem given by an operator A : x→ y and noisy data y(i) = Ax(i) +η(i), which set x(i)’s as inputs and y(i)’s as
outputs to train the forward operator, while the training of a neural network to solve the inverse problem is given
using y(i)’s as inputs and x(i)’s as outputs.

Mass [9] indicates that training even a most simple neural network for a well-posed matrix-vector multiplica-
tion yields good results. However, the natural approach for training a network for an inverse problem by reversing
inputs and outputs fails in cases where you have an unstructured matrix with high level of sparsity.

There are many works in literature that uses learning approaches to predict damage. In Liu et al. [10], the
authors investigate machine learning methods to predict the length of the path across delamination area in compos-
ite materials. In Ritto and Rochinha [11], the authors tested different classifiers and parameters in order to build a
fast digital twin (machine learning), by using a physics-based model, that will be connected to the physical twin
to support real time engineering decisions. The computational model consists in approximate a bar structure with
actuators and sensors to a 6-DOF lumped parameter, where some parameters are random in order to give the model
a stochastic approach. Zobeiry et al. [3] used a continuum damage finite element model to train interconnected
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Neural Networks (NN) in series, based on macroscopic load-displacement data in order to characterize damage in
quasi-isotropic composite laminates. Then, they used experimental measurements obtained through cumbersome
non-destructive testing to validate the predicted damage properties. Santos et al. [12] investigate and compared
the classification performance of four kernel-based algorithms (one-class support vector machine, support vector
data description, kernel principal component analysis and greedy kernel principal component analysis) by using
measures of an acceleration time-series from an array of accelerometers obtained from a laboratory structure. And
Pathirage et al. [13] propose an autoencoder deep network for structural damage identification in highly non-linear
problems. They use the natural frequencies and mode shapes of vibration as input and the structural damage as
output in order to train the network.

Chen et al. [6] mention that deep learning is becoming an increasingly important tool for solving inverse
scattering problems (ISPs) in recent years. ISPs can be seen as a problem that consists in determining the nature
of an unknown scattering distribution from the measure of the scattered fields. ISPs are challenging to solve
because they are intrinsically ill-posed and nonlinear. ISPs can be tackled by either traditional objective-function
approaches (as can be seen in Leiderman and Castello [14], Cakoni et al. [15], Gaikovich and Gaikovich [16], to
cite a few) or learning approaches, that is the scope of the present work. To avoid using DL as a purely data-driven
black-box solver, it is important to address the problem of how profitably is combining DL with the available
knowledge on underlying physics as well as traditional objective-function approaches. Many research efforts have
been made in this direction to achieve real-time quantitative results. The physical-insight perspective applies not
only to ISPs, but also to many other physical regression problems. In fact, in many practical applications, data
collected by sensors are automatically governed by physical laws. Some of these physical laws present well-
known mathematical properties or analytical formulas, which do not need to be learnt by training with a lot of data
as stated by Chen et al. [6].

In the present work, we develop an inverse formulations in order to identify and estimate damage fields in
interfaces of composite laminates. The use of a deep learning regression technique is investigated aimed to recover
the damage field at any interface and direction of a composite laminate immersed in an acoustic fluid from the
scattered reflected field.

2 Mathematical Formulation

Here we formulate a generic multilayered laminate fully immersed in an acoustic fluid as shown in Fig. 1.
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Figure 1. A representation of an acoustic scattering problem in a composite laminate immersed in a fluid medium.

In this technique, we divide the displacement u and traction t fields into up and downgoing fields, i.e., fields
propagating (or being attenuated) in the positive vertical (z) direction and fields propagating (or being attenuated)
in the negative vertical (z) direction.

The solid layers are treated as elastic, isotropic and homogeneous, where stress σ and displacement field u
satisfy

∇ · σ + ρ ω2u = 0, (1)

and

σ = C : ∇u, (2)

where ρ is the mass density, ω is the angular frequency and C is the elasticity tensor. However, we point out that

CILAMCE 2021-PANACM 2021
Proceedings of the XLII Ibero-Latin-American Congress on Computational Methods in Engineering and
III Pan-American Congress on Computational Mechanics, ABMEC-IACM
Rio de Janeiro, Brazil, November 9-12, 2021



Bernardo Junqueira, Daniel Castello, Ricardo Leiderman

this formulation could accommodates for anisotropic layers as well, as can be seen in [17].
The displacement field u and traction vector t are related by [18]:

ūa(z2) = Ma(z2 − z1)ūa(z1), a = 1, 2, (3)

t̄a = −i ω Zaūa, a = 1, 2, (4)

where (•)1 and (•)2 denote up and downgoing fields, respectively, z1 and z2 are the vertical coordinates of
the bottom and the top of the layer under analysis, operators M1(•) and M2(•) propagate the up and downgoing
displacement fields in each layer, respectively, and Z1 and Z2 are the local impedance tensors, which relate up and
downgoing traction vectors t̄α to the corresponding displacement fields ūa [17, 19]. Ma(•) and Za(•) are obtained
by the exact solution of the elastodynamic equations of motion and its computation are presented in [17, 19] for
isotropic and anisotropic media. The bar on top of the field variables stands for a single Fourier Transform over
the x-direction, indicating the representation of these in the wavenumber vector x component domain.

As can be seen in Fig. 1 the damage field at interfaces is heterogeneous, leading to an acoustic scattering
phenomenon. This changes the formulation of the acoustic direct problem into an optimization problem, which
can be solved in one step [20], as follows:

1. Transform the given incident field u+
2 .

2. Choose an initial guess for the transmitted field at the upper interface ū−
2 and assemble its real and imaginary

parts into a minimization parameters vector p(0):

p(0) = [[real
{
ū−
21

}
]T , [imag

{
ū−
21

}
]T , [real

{
ū−
22

}
]T , [imag

{
ū−
22

}
]T ,

..., [real
{
ū−
2N

}
]T , [imag

{
ū−
2N

}
]T ]T .

(5)

Notice that it can be any initial guess.
3. Calculate u−

1 through

u−
1 = [Z1 − Zf2 ]−1[−zf2(2ū+2z − ū

−
2z)n− Z2ū

−
2 ], (6)

where Z1 and Z2 are the elastic layer local impedance tensors, Zf2 and zf2 are the local impedance of the
fluid and n is the outward unit vector in the z direction.

4. Then we propagate ū−
1 and ū−

2 to the bottom of the layer, using eq. 3 to determine the up and downgoing
fields (ū+

1 and ū+
2 ) at the top of the next interface.

5. Calculate ū+ = ū+
1 + ū+

2 , calculate t̄+ through

t̄+ = −i ω [Z+
1 ū+

1 + Z+
2 ū+

2 ], (7)

and perform the inverse Fourier transform to determine u+ and t+.
6. Calculate u− and perform the Fourier transform to determine ū−.
7. By using the boundary condition of traction continuity, eq. 4, t̄− = t̄−1 + t̄−2 and ū− = ū−

1 + ū−
2 , compute

ū−
1 through

ū−
1 = [I− Z−

2 ]−1[Z−
1 ]−1(−1 ω)−1t̄− − Z−

2 ū−, (8)

then use ū− = ū−
1 + ū−

2 to calculate ū−
2 .

8. Use steps 4-7 recursively to determine ū+
1 and ū+

2 at the lower interface of the structure.
9. At the lower interface, the solid-inviscid fluid boundary conditions must be satisfied. Furthermore, one can

notice that the Sommerfeld condition takes place in the lower half-space, i.e., ū− = ū−
2 and ū−z2 can be

straightforwardly calculated.
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10. Then the residual vector can be calculated by

rj = t+j − i ω zf2 w̄
−
2 n, (9)

where the cost function can be written as the ordinary least squares norm:

M∑
j=1

[real {rj}]T [real {rj}] + [imag {rj}]T [imag {rj}]. (10)

11. Repeat steps 2–10, perturbing the entries in p(0), one at a time, to assemble the Jacobian Matrix J:

Jij =
ri(p

(0)
1 , ..., p

(0)
j + ε, ..., p

(0)
N )− ri(p(0)1 , ..., p

(0)
j , ..., p

(0)
N )

ε
. (11)

12. Each residual rj represented in the cost function 10 may be thought of as a linear function of the mini-
mization parameters vector. Therefore, the cost function 10 is quadratic with respect to the minimization
parameters and has thus only one (global) minimum, and the Jacobian (sensitivity) matrix associated to
the problem is not a function of the minimization parameters. In this case, the minimization of 10 can be
performed straightforwardly as

p∗ = J(0) − [JTJ]−1JT r(p(0)), (12)

where p∗ is the solution for the problem.

From the direct resolution of the problem, a deep neural network is then trained with the scattered reflected
field as input and a random damage field, generated from stochastic Guassian fields, as output. Furthermore,
in the inverse analysis, we use noisy scattered data to try to recover the damage field associated with the
response using the trained neural network.

3 Results

The analysed physical system corresponds to a structure composed by stainless steel, copper and aluminum,
bonded by thin epoxy adhesives and immersed in water, the whole system and its measures are shown in Fig. 2.
Furthermore, the mechanical properties of each constituent material are presented in table 1.

z

x

Fluid

Fluid
α 

Aluminum

Copper

Stainless Steel

Epoxy

1000 mm

20 mm

10 mm

30 mm

(100 μm)

Figure 2. The physical system. Where α corresponds to the orientation of the incident field (angle of incidence).

For the results shown In Figure 3, we inspect and consider only defects at the interface between the copper
and aluminum layers, in the x-direction (red interface, see Figure 2). Furthermore, the proposed incident field is a
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Material cp [m/s] cs [m/s] ρ [kg/m3]

Stainless Steel 5790 3100 7900

Copper 4660 2660 8930

Aluminum 6320 3130 2700

Epoxy 2150 1030 1200

Water 1480 0 1000

Table 1. Mechanical properties of the constituent materials of the system shown in Fig.2. Note: cp and cs stands
for P-wave and S-wave speeds, respectively.

time harmonic rectangular wave, with an oblique incidence of 4.1o and main frequency of 102.8 kHz. In Figure 3)
the results for a Flawless interface, a Gaussian damage and a rectangular damage using a deep neural network as
the inversion procedure.
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Figure 3. Damage field prediction between the copper and aluminum layers in the x-direction. The blue line
represents the true field, while the red dashed line represents the estimated field. Here x represents the inclined
x-axis in respect to the angle of incidence α normalized to the half of the length of the represented structure
(x̄ = X/L).
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4 Conclusions

The idea of a deep learning inverse analysis came from the fact that, traditionally, inverse scattering problems
with objective-function approach have a very high computational cost, since the direct problem is already an
interactive process, i.e., it is costly. Take the work of Leiderman and Castello [14], as an example, where they
adopt a specific parametrization to describe the damage, reducing the computational cost, but not enough to predict
defects in a suitable time. In fact, solving the whole inverse problem using an objective-function approach takes a
lot of time. In contrast, even though the process of training the deep network demands a considerable time, once
trained the approach has the potential to predict a whole damage field, without the need for parameterization, in
real-time and with accurate results, as can be seen in the present work.
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