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Abstract. The procedure is based on the Energy Correlation Distance between each FRF (Frequency
Response Function) collected on a grid and the set composed by all FRFs from a measurement mesh. To
enhance the difference between a healthy and a damaged sites the FRF frequency sequence for highest
modes is employed. This Energy Correlation Distance, at each grid point, is then treated using classical
spacial statistical procedure, Krige method and Spatial Autocorrelation. To illustrate the procedure some
initial results are included. Results for experimental data from composite plates and from a aluminium
shell plate are presented. Remarks about the presented method improvements, limitations and restrictions
are also incorporated.

Keywords: Energy Correlation Distance, Structural Health Monitoring, Frequency-based Damage De-
tection Method, spatial statistics, kriging

1 Introduction

The objective of this work is to determine a damage site using a FRF (Frequency Response Function)
plate grid dataset. Complying with this, it is necessary to identify and quantify the differences between
FRFs at different grid points. This space time analysis using a FRF is a challenging task because the
FRF is not a single data it is a multivariable measurement (in a single spatial point there are a sequence
of frequencies and associated amplitudes). The idea is to use a procedure or a function that using two
FRFs returns a unique value, if this function satisfy the metric axiom (separation condition, symmetry
and triangle inequality), a proper use of this metric distance could accomplish the outlined objective.

A recent proposed procedure is the Energy Covariance and Correlation Distance introduced by
Székely, Rizzo and Bakirov [1]. Energy Distance is a distance between probability distributions (Rizzo[2]).
It applies to random vectors in arbitrary dimensions, and the methodology requires only the mild as-
sumption of finite first moments (Rizzo [2]). There are many routines for different areas as reported by
Rizzo [2] mainly, but not only, in times series analysis where identify temporal dependence structure on
time series is an important issue (Zhou [3], Pitsillou [4]).

For this work, beyond simplicity, the main aspect of the Energy Correlation Distance is the property
of the coefficient R2

n(X,Y ). For variables X and Y with finite first moments (finite mean), all possibilities
for R2

n(X,Y ) lies on the range 0 ≤ R2
n(X,Y ) ≤ 1. R2

n(X,Y ) = 0 only if X and Y are linearly independent
and R2

n(X,Y ) = 1 only if there is a linear dependence between X and Y . This is important because
R2

n(X,Y ) = 0 does not hold for linear independent sets for general metric spaces , only for separable
ones (Lyons [5]). The Energy Distance R2

n(X,Y ) satisfies all axioms of a metric distance, (Székely
[1]), that are valid not only for Euclidean metric although it is used in following revision. The authors
also highlights that Distance correlation can be applied as an index of dependence, (Székely [1]), more
important, without requiring distributional assumptions (Székely [6]).

A problem with R2
n(X,Y ) statistic is the bias increasing with sample dimension. Szekely and Rizzo

[7] introduced the unbiased distance correlation R∗
n(X,Y ) to overcome this drawback. The remarkable

difference is that R∗
n(X,Y ) lays in interval −1 ≤ R∗

n(X,Y ) ≤ 1, but |R∗
n(X,Y )| ≤ 1 satisfy the triangle
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inequality inheriting all other properties of the R2
n(X,Y ) statistic[7].

Defined R∗
n(X,Y ) as the metric distance between FRFs, the next step is to implement a procedure

that can use this metric properties efficiently exploring the structural characteristics. The main idea came
from a statement of the spatial statistic that near points have close properties [8], so nearest points should
present similar FRFs or FRF distances close to 1. The FRF unbiased correlation distances between two
nearest points is an important information about local structural health.

In this work a procedure similar to many mode extraction technique will be used, the FRF will
be analysed using FRF frequency range in a vicinity of a frequency mode. This procedure is employed
because there is a expected displacement change in the neighbourhood of the damaged site. In the Fig.
1 a graphical interpretation of this phenomena that will be more significant for high frequency modes.
In the reference Duarte and Donadon[9] a more detailed discussion about this behaviour.

The identification procedure is based on the following steps and assumptions:
1- stablish a metric distance to quantify the distances between two FRFs;

a - from spatial statistics the nearest points presents similar properties[8];
b - although not strictly necessary, a reference will be employed. The reference is the complete FRF

dataset. So the distances will be computed between FRFs from a single point to the complete FRF
dataset including the FRF whose distance to the set is been computing.
2- the FRFs distances will be analysed in similar fashion of many mode extraction procedures. There
will be an analysis in the vicinity of each natural frequency and not using the entire FRF frequency.

a - the wavelength of the mode shape,λ, reduces with frequency increase, Fig. 1, and there is a strain

Figure 1. Strain energy rising with frequency increases the difference between damaged and healthy areas.

energy enhancement highlighting the damaged sites [9].
3- the result of applying all previous steps is the distance to the reference, a scalar data, at the grid nodal
points for each natural frequency.
4- In this work the kriging method is employed to analyse this scalar spatial data. This procedure allows to
identify discrepancies by modelling deterministic data trend and the stochastic component independently.
5- kriging method is a linear interpolation method and will be employed to check the spatial discrepancies
using the expected symmetry of the dynamical response of the symmetrical structures.

The reported results in this work are from symmetrical structures and this procedure will ensure
a more smooth distances between closest and symmetric points. The objective is to enhance symmetry
from interpolation procedure as this could help to exhibit an odd measurement.

2 The Energy Distances

As stated the algorithm Coefficient for Covariance Correlation Distances are very simple. From
classical Euclidean distance matrix aij defined as aij = |xi−xj | =

[∑p
k=1(xik − xjk)

2
] 1

2 , where xk ∈ Rp,
xk ⊂ Xn,p. Similarly yl ⊂ Y n,q defines a Euclidean distance matrix bij = |yi − yj |. The bi-centered
matrix Aij is computed from Euclidean matrix, Aij = aij − āi − āj − ā, where

āi = āi, =
1

n

n∑
k=1

ai,k āj = ā,j =
1

n

n∑
k=1

ak,j ā =
1

n2

n∑
i,j=1

ai,j (1)

Bij is computed using similar procedure Bij = bij − b̄i − b̄j − b̄.
The Székely paper [7] work starts with the observation that the bias of the R2

n(X,Y ) statistic
increases with dimension. For Xn,p and Yn,q when p, q → ∞ then Rn(X,Y ) → 1 and Vn(X,Y ) → ∞.
Székely [7] propose the bias corrected A∗

i,j and B∗
i,j matrices using the previous defined matrices ai,j , bi,j ,

Ai,j and Bi,j

A
∗
i,j


=

n

n − 1

(
Ai,j −

ai,j

n

)
, i 6= j

=
n

n − 1
(āi − ā) , i = j

and B
∗
i,j


=

n

n − 1

(
Bi,j −

bi,j

n

)
, i 6= j

=
n

n − 1

(
b̄i − b̄

)
, i = j

(2)
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The Unbiased Distance Covariance statistics V∗
n(X,Y ) and Unbiased Distance Correlation coefficient

R∗
n(X,Y ) are

V∗
n(X,Y ) =

1

n(n − 3)

 n∑
i,j=1

A
∗
i,jB

∗
i,j −

n

n − 2

n∑
i=1

A
∗
i,iB

∗
i,i

 and R∗
n(X,Y ) =

V∗
n(X,Y )√

V∗
n(X,X)V∗

n(Y, Y )
(3)

if the Distance Covariances V∗
n(X,X) = 0 or V∗

n(Y, Y ) = 0 then R∗
n(X,Y ) = 0. Also the empirical statis-

tical coefficients V∗
n(X,Y ) and R∗

n(X,Y ) converge almost surely to the population coefficients V∗(X,Y )
and R∗(X,Y ) as n → ∞. As stated the −1 ≤ R∗

n(X,Y ) ≤ 1, but 0 ≤ |R∗
n(X,Y )| ≤ 1 and satisfy the

triangle inequality and the metric axiom[7].

3 Kriging Spatial Interpolation

The Correlation distances R∗
n obtained at each grid point of the plate are analysed using the kriging

interpolation method. As there are few data points the interpolation will allow a better interpretation of
the results to check the spatial discrepancies.

The kriging is a well known and tested spatial estimation procedure and it will not be extensively
reviewed. In the reference van Lieshout [10] a short and well grounded introduction to spatial kriging,
the extended concept to spatio temporal kriging the reference Wikle et al. [8] is a more appropriate
reference, in the Pebesma [11] is a short review also showing a practical application of the method. The
kriging method is a linear interpolation at position zo based on a spatial model constructed from the
known space point variable values, z.

Y ∗(zo) =

N∑
i

λiY (zo) +m(zo) (4)

where zo = (xk, yk) is the zo coordinates and Y ∗(zo) is the estimation at unobserved positions zo using a
weighted values λi computed from known positions z. The term m(z), m(z) = βo+β1f1(z)+β2f2(z)+ . . .
is the fitted deterministic term of the equation.

The procedure is based on the spatial stationarity, there are the assumption that the mean can be
estimated by the arithmetic mean of a stochastic data. For a random, or Gaussian, distribution this
term is a constant mean, m(zo) = µ, and the procedure is named simple kriging. It means that there is
no tendency of the data values Y (z) with position z. Ordinary kriging is applied when m(zo) is locally
constant or can be considered locally constant. The universal kriging is used if there is a spatial trend or
spatial data correlation, m(z), that must be considered. The

∑N
i λiY (zo) term is intended to be applied

to a random data, if there is a trend, then it should be applied on residual of the spatial correlation
m(zo). The algorithm is distinct for each case.

The second stationarity principle can be stated as follow: the correlation between two random
variables solely depends on the spatial distance between them, and does not depend on their location or
position. If |zi − zk| < h the correlation C(zi, zk) = C(h)

C(zi, zk) =
1

K

∑
(Y (zi)−m(zi))(Y (zk)−m(zk)) =

1

K

∑
(Y (zi)−m(h))(Y (zk)−m(h)) (5)

K =
∑

k for |zi − zk| < h and
m(h) =

1

2N

∑
(Y (zi) + Y (zk)) (6)

Based on these principles the next step is to fit data or its residual to a tested family of variogram
models (Spherical, Exponential, Linear etc) Pebesma [12, 13]. The objective is to select a model that min-
imizes the variance with distance, the stochastic spatial model, allowing to create a system of equations
to determine λi. In the kriging method there is a deterministic term, m(z), the interpolation term to han-
dle the global data trend and a stochastic term,

∑N
i λiY (zo), considering the randomness in the data[10].

4 Data, Measurements and Analysis

The data employed to analyse the proposed method was not obtained from a experiment projected
specifically to test this procedure. The first dataset is from a aluminium plate monitored by 36 PZT grid
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sensors and second dataset is from a laminate plate monitored by a accelerometer attached in a unique
single position. In both cases the system is excited by the a hammer. The data analysis was performed
using the public packages from R Project for Statistical Computing https://www.r-project.org/.
The distance correlation is computed using the package: energy, kriging method: sp, gstat[11], kriging
variogram optimization: automap, and graphical: raster, ggplot2.

4.1 The Aluminium Plate

The first structure is a square aluminium plate, 1 m×1 m, thickness×1.0× 10−3 m and 2.7 kg, data
from vendor. It was hanged up by two symmetrical thin nylon wire, Fig.2. The measurement grid is
composed by a squared mesh, each side with 18×10−3 m (180 mm) length. The passive or measurement
PZT sensor is attached at the grid points by a thin bond epoxy layer. The PZT sensor has an effective
diameter DPZT ≈ 6.5 mm, with an area of 3.318×10−5m2 and are from Acellent Technologies.

Experimental data acquisition was performed by the PHOTON II from LDS. Measurements were
done using a excitation hammer, the original FRFs have units mV/Newton (response/excitation or Xi/Fj)
from 0 to 560 Hz using a sampling rate of 1280 Hz. The hammer is a PCB model 086C05, the signal
used in this work employs only response to excitation at the same position or Xi/Fj only for i = j. The
excitation was done using the hammer on the plate face just behind the sensor position.

Figure 2. Aluminium plate, PZT sensor mea-
surement grid layout Figure 3. FRFs from Aluminium plate

Data Analysis from Aluminium Plate

There are no damage inside the grid measurement area, the procedure is employed to check some
assumptions in the proposed procedure and to check some measurement aspects and experimental results
that could bother the analysis.

In the FRFs frequency range, from 0 to 560 Hz, Fig. 3, were identified 54 natural frequencies. Each
FRF was normalized using weighted values by setting the FRF maximum to 1, avoiding strong amplitude
discrepancies between FRFs. As stated, the frequency range in the vicinity of each natural frequency is
analysed, the distances computed at grid points and a ordinary kriging is performed for this frequency.
In figure 4 some results using ordinary kriging interpolation.

Figure 4. Kriging interpolation graphics.

The main assumption to be checked is the symmetry because there is no damage and the structure is
symmetric. The majority of the interpolation panels presented some kind of symmetry but this symmetry
is not perfect. Analysing the symmetry was defined the Vc vertical and Hc horizontal coordinates of the
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Figure 5. Coordinates of the symmetry axis, vertical, Vc, in blue lines, and horizontal, Hc, in red lines

symmetry axis of the kriging interpolated panels.

Vc =

∑
xiR∗

i∑
R∗

i

and Hc =

∑
yiR∗

i∑
R∗

i

(7)

Figure 5 shows the variations of the symmetry axis with frequency, the vertical axis, Vc, is plotted in blue
lines, red lines for the horizontal, Hc. The plate center coordinates are xc=0.5 m and yc=0.5 m. Using
this Fig. 5 the most significant axis displacement were selected and the correspondent kriging panels
are plotted. In Fig. 6 there are panels for significant displacement axis Hc labelled by original letter
case. For the symmetry axix Vc, the equivalent panels are plotted in Fig. 7. In Fig.6, panel d, and in

a b c d e f

Figure 6. Kriging interpolation graphics for great displacement of the horizontal symmetry axis.

g h i j k l

Figure 7. Kriging interpolation graphics for great displacement of the vertical symmetry axis.

Fig.7, panels j, k and l, these panels are from a close neighbourhood sequence of modes or twin mode
cases. This means that there is no clear separation between the modes, the panels from them are not
well defined, but, by chance, one of them can presents a big asymmetry captured by axis displacement.
For highest frequencies the panels are less defined too, the size of the grid mesh and the reduction of the
hammer energy with frequency could explain this behaviour. The panels in Fig. 6-a and d seems to be
related to the suspension area of the plate.

4.2 The Composite Plate

The composite data is from a nanocomposite laminate plate and was used in a modal analysis
to determine its mechanical properties, Duarte et al. [14]. The S2-glass/epoxy-nanoclay composite is a
laminate plate with 16 layers and a 65% fiber volume fraction. The nanoclay particles used are organically
modified montmorillonite in a platelet form, while the S2-glass fiber has a plain-weave woven fabric
configuration with a density of 180 g/m2 from Texiglass. The total mass of the plate is 6.527×10−2 kg
(65.27 grams).
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Figure 8. Composite plate measurement layout Figure 9. FRFs from composite plate

The FRF measurement was taken in a rectangular plate with dimensions 1.36×10−1 m (136 mm) ×
1.16×10−1 m (116 mm) × 2.4×10−3 m (2.4 mm). There are 35 grid points, 5 × 7 divisions per side.

The excitation is performed by a hammer PCB 086C05. The hammer excites at each grid point while
the accelerometer remains in the same position in all measurements. Experimental data acquisition was
performed by the PHOTON II, the FRFs have units g/Newton in a frequency range from 0 to 1300 Hz
using 3000 Hz sampling rate, the normalized FRFs are in Fig.9. The acceleration transducer is a PCB
miniature, type 352A71, with a mass of 6.40×10−4 kg (0.64 grams) at about 1.0% of the plate mass.

a b c

d e f
Figure 10. Kriging interpolation graphics for laminate plate.

The objective of this section is to check the capability of the method to identify the position of the
accelerometer. Of course it is not a real damage but the accelerometer attached to the plate surface
promotes a perturbation in the structure response. The 1% mass ratio between accelerometer and the
plate mass can be considered a good test. The accelerometer position is the circular mark in Fig. 8.

Composite Plate Data Analysis

In Fig. 10 the panels from applying the kriging method to the grid point correlation distance, R∗
i,j .

The panels are labelled with the frequency range identification showed in Fig.9. The panels were obtained
from flagged frequency range. There is not a perfect symmetry also. There is a horizontal and vertical
symmetry in the panel Fig. 10-a, a horizontal symmetry can be viewed in panels c and e, and a vertical
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symmetry in the panel Fig. 10-b. There is no symmetry in the graphics d and f. The panels in Fig. 10-c
and Fig. 10-d are from a twin mode frequency range, and the panel d is the most ill-defined graph.

The Fig. 10-f is very different from the previous ones. There are faint areas protruding from an
almost similar measuring level, the biggest and more intense anomaly is closest to the accelerometer
position. There is no more modes to assert that it is an indication of the sensor position, but all
characteristics of the graph points to this direction and the sensor is not positioned in grid point.

5 Conclusions

The proposed method for damage site identification based on distance correlation metrics and kriging
spatial interpolation presents promising results. With few improvements this is a simple method to
analyse locally symmetrical or mirrored parts. Structures are usually symmetrical, using this property is
not necessary to analyse the full structure to monitory it.

Authorship statement. The authors hereby confirm that they are the sole liable persons responsible
for the authorship of this work, and that all material that has been herein included as part of the present
paper is either the property (and authorship) of the authors, or has the permission of the owners to be
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