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Abstract. This paper presents an application of Recurrent Neural Networks to the one-dimensional Wave Equation.
Nowadays, Neural Networks have been widely used due to the advances in computer hardware, since it allows
that a great amount of data could be processed in parallel. Over the years, new and improved neural network
architectures were developed, as for example the Recurrent Neural Network, mainly used in time series analysis.
In this study, the 1-D wave equation solution is implemented using Finite Differences in Time Domain considering
Neumann Boundary Conditions, and two architectures of Recurrent Neural Networks were explored: LSTM and
GRU. The results were organized according to the hyper-parameters used to train and validate the networks, and
they were evaluated quantitatively, using the mean squared error as loss function, and qualitatively, observing the
response plots for dataset validation. It was possible to achieve predictions with mean squared errors of order 10−6

and a training time of 23 seconds per epoch using GPUs.
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1 Introduction

In the last years, Neural Networks (NNs) algorithms have gained notoriety due to their high capacity in
solving complex problems such as image and speech recognition and medical image processing. Furthermore, they
had proved to be a powerful tool in the Numerical Calculus field: one of the first implementations of NNs aiming
at this kind of problem was presented by Lee and Kang [1] for parameter optimization of the Finite Difference
Method (FDM) used to solve Partial Differential Equations (PDEs) as in Lima [2].

Since then, new NNs architectures were proposed in order to evaluate differential equations, such as the Wave
Equations in Hughes et al. [3] and the Schrodinger Electronic Equations in Hermann et al. [4]. As expected, such
studies showed solid results, since the Universal Approximation Theorem states that any continuous function can
be approximated by a NN with hidden layers and a finite number of neurons as proposed by Lima [2].

Recently, specific NN architectures were developed to address the solution of time series problems, such as
the Recurrent Neural Network (RNN). The RNN is characterized by its high capability of sequential data process-
ing, as discussed by Goodfellow et al. [5], and is suitable for modeling wave equation solutions, as demonstrated
by Hughes et al. [3].

In its original format, simple RNNs have a problem characterized by the short-term memory, meaning that,
at a certain point, the network will fail to predict new values if the model requires information from the earlier
steps. Two possible solutions are given by the development of networks architectures such as Gated Recurrent
Unit (GRU) and Long Short-Term Memory (LSTM) (Nguyen [6]). Both of these architectures present similar
concepts and aim to solve the short-term memory problem by implementing an intern mechanism known as ”gates”,
responsible to perform the sequence learning in what can be called a ”smart way”: understanding which data the
network must keep or discard according to some given criterion as in Goodfellow et al. [5].

The main difference between GRU and LSTM is that the first possesses only two gates in its structure, the
”Update Gate” and the ”Reset Gate”, while the latter has these two gates and at less two additional gates: the
”Forget Gate” and ”Output Gate” as described by Nguyen [6]. It is important to highlight that these gates are
also Neural Networks and have their own characteristics. Figure 1 presents a comparison between these two
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architectures.

Figure 1. LSTM Architecture versus GRU Architecture[6].

Since these architectures are specialized in modeling time series problems, they have been used to solve
differential equation systems along with numerical methods, such as the Finite Difference Method in Time Domain
(FDM-TD) as mentioned by Yao and Jiang [7]. Thus, this paper presents a performance comparison between RNN-
GRU and RNN-LSTM in predicting the response of the One-Dimensional Wave Equation solution for linear and
homogeneous medium and Neumann boundary conditions. The dataset used in training and validation procedures
was evaluated using FDM-TD and several hyperparameters were considered, such as the dimensionality of the
output space, the number of learning units, the batch size, and the activation function.

2 Methodology

2.1 Wave Equation Solution and Dataset Preparation

The implementation of the FDM-TD and all RNN architectures were performed in Python 3.8 Anaconda dis-
tribution1 along with NumPy2, Tensorflow 2.13, and Matplotlib4 packages. The One-Dimensional Wave Equation,
its boundary, and initial conditions are given by Equations 1 to 5:

∂2u(x, t)

∂t
= c2

∂2u(x, t)

∂x2
(1)

u(x = 0, t) = sin(ωt) (2)

∂u

∂x
(x = L, t) = 0 (3)

u(x, 0) = 0 (4)

1https://www.anaconda.com/
2https://www.numpy.org/
3https://www.tensorflow.org/
4https://www.matplotlib.org/
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∂u(x, 0)

∂t
= 0 (5)

Since the main concern of this paper is to compare LSTM and GRU architectures in predicting the wave
equation solution, a standardized set of wave parameters were considered: T = 1(s) and λ = 1(m) with c =
1(m/s); and for the FDM-TD model ∆x = λ/20(m), ∆t = T/20(s), L = 2λ(m) within a time window of
2T (s).

2.2 Test and Validation Procedures and Neural Network Setup

The FDM-TD solution resulted in a matrix U ∈ <Nx×NT , with Nx and NT the number of samples in x and
t-axis respectively. The matrix was converted into an array Ū ∈ <NxNT×1, as presented in Fig. 2.

Figure 2. Wave Equation solution used as dataset for training and validation.

For training and validation purposes, a 95:5 ratio was used, i.e., using 95% of the available data for training
(1292 samples) and 5% for validation (68 samples). In order to improve the training and validation results, a
pre-processing stage was considered, consisting of a min-max normalization. Once the training and validation
procedures were done, the dataset denormalization was applied in order to provide the actual predicted values.

The loss function considered in this paper was the ”mean squared error”, and the Adam optimizer developed
by Kingma and Ba [8] with adaptive learning rate was adopted. For each architecture, the training procedure had
a series of adjustable parameters as presented in Table 1 along with their respective range values. It is important
to note that the same set of hyper-parameters were considered for both architectures, allowing comparison of their
performances.

Table 1. Hyper-parameters set and values range

Hyper-parameter Values Range

Nt [2, 16]

Nu [102, 103]

Length [10, 50]

Batch [1,50]
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The activation functions considered are shown in Fig. 3.

Figure 3. Activation functions considered: A) linear; B) tanh; C) sigmoid; D) hard sigmoid

For hyper-parameters optimization, an initial random exploration was considered taking into account the loss
function evaluated for the training and validation datasets. Once a sub-optimal range for each hyper-parameter was
defined, a grid search was applied, in which the hyper-parameters varied progressively and equally spaced. It is
important to note that the number of epochs used in the experiments was not considered a hyper-parameter, since
it was possible to monitor the validation error using the early stopping 5 method.

3 Results

This section presents the results considering the tanh and hard sigmoid activation functions, since they
presented the lowest loss function values for the training and validation dataset. Regarding the evaluation time
for the whole training and validation procedures, both architectures were comparable, having an average time of
23(s/epoch). The optimal set of hyper-parameters for both architectures was observed to be the same and it is
presented in Table 2.

Table 2. Optimal hyper-parameters set

Parameters tanh hard sigmoid

Nt 8 8

Nu 100 100

Batch 1 1

Length 10 10

3.1 GRU

Table 3 shows the loss function values for test and validation datasets and Fig. 4 presents the qualitative
results.

Table 3. GRU: Minimum loss function errors observed

Dataset evaluated tanh hard sigmoid

Train 183.0× 10−6 402.0× 10−6

Validation 29.0× 10−6 188.0× 10−6

5Available at: https://keras.io/api/callbacks/early stopping/
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Figure 4. Activation function and GRU performance: A) hard sigmoid; B) tanh.

Figure 5 presents the variation of the loss function value for training and validation datasets. Each plot was
evaluated by varying one of the parameters while keeping all others fixed with values presented in Table 2.

Figure 5. Error profile for GRU considering as variable: A) Nt; B) Nu; C) Length; D) Batch Size;

3.2 LSTM

Table 4 shows the loss function values for test and validation datasets and Fig. 6 presents the qualitative
results.

Table 4. LSTM: Minimum loss function errors observed

Dataset evaluated tanh hard sigmoide

Train 182.0× 10−6 295.0× 10−6

Validation 31.0× 10−6 638.0× 10−6
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Figure 6. Activation function and LSTM performance: A) hard sigmoid; B) tanh.

Figure 7 presents the variation of the loss function value for training and validation datasets. Each plot was
evaluated by varying one of the parameters while keeping all others fixed with values presented in Table 4.

Figure 7. Error profile for GRU considering as variable: A) Nt; B) Nu; C) Length; D) Batch Size

4 Discussion

As presented in the previous section, the GRU and LSTM presented similar performances with the same
hyper-parameters set. From a qualitative point of view, i.e., observing Figs. 5 and 7, GRU with tanh activation
functions was able to reproduce the frequency of the validation dataset and even match its amplitude in several
points. The same conclusion can be said when taking into account the loss function value evaluated for the valida-
tion dataset: GRU and tanh presented the lowest value considering all four experiments presented.

It can be observed that, despite the loss function values presented in Table 4, the LSTM architecture along
tanh and hard sigmoid presented an almost constant amplitude, while the validation dataset presented a decay-
ing; it also presented a phase shifting as can be observed in Figs. 7.
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5 Conclusion

This paper presented a study of the performance of LSTM and GRU Recurrent Neural Networks in predicting
values for the One Dimensional Wave Equation with Neumann boundary condition with a sine wave input. The
results presented suggest that both the LSTM and GRU architectures can be used to simulate the wave equations,
although a more suitable loss function must be used in order to accurately describe and penalize the amplitude and
phase shifting errors. Also, more studies regarding the impact of the variation of the hyper-parameters values over
the amplitude, frequency and phase can be designed in order to explain how the networks lean the considered time
series.
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